Metamath Proof Explorer


Theorem znzrhfo

Description: The ZZ ring homomorphism is a surjection onto ZZ / n ZZ . (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypotheses znzrhfo.y Y = /N
znzrhfo.b B = Base Y
znzrhfo.2 L = ℤRHom Y
Assertion znzrhfo N 0 L : onto B

Proof

Step Hyp Ref Expression
1 znzrhfo.y Y = /N
2 znzrhfo.b B = Base Y
3 znzrhfo.2 L = ℤRHom Y
4 eqidd N 0 ring / 𝑠 ring ~ QG RSpan ring N = ring / 𝑠 ring ~ QG RSpan ring N
5 zringbas = Base ring
6 5 a1i N 0 = Base ring
7 eqid x x ring ~ QG RSpan ring N = x x ring ~ QG RSpan ring N
8 ovexd N 0 ring ~ QG RSpan ring N V
9 zringring ring Ring
10 9 a1i N 0 ring Ring
11 4 6 7 8 10 quslem N 0 x x ring ~ QG RSpan ring N : onto / ring ~ QG RSpan ring N
12 eqid RSpan ring = RSpan ring
13 eqid ring ~ QG RSpan ring N = ring ~ QG RSpan ring N
14 12 1 13 znbas N 0 / ring ~ QG RSpan ring N = Base Y
15 14 2 eqtr4di N 0 / ring ~ QG RSpan ring N = B
16 foeq3 / ring ~ QG RSpan ring N = B x x ring ~ QG RSpan ring N : onto / ring ~ QG RSpan ring N x x ring ~ QG RSpan ring N : onto B
17 15 16 syl N 0 x x ring ~ QG RSpan ring N : onto / ring ~ QG RSpan ring N x x ring ~ QG RSpan ring N : onto B
18 11 17 mpbid N 0 x x ring ~ QG RSpan ring N : onto B
19 12 13 1 3 znzrh2 N 0 L = x x ring ~ QG RSpan ring N
20 foeq1 L = x x ring ~ QG RSpan ring N L : onto B x x ring ~ QG RSpan ring N : onto B
21 19 20 syl N 0 L : onto B x x ring ~ QG RSpan ring N : onto B
22 18 21 mpbird N 0 L : onto B