Metamath Proof Explorer


Theorem znzrhval

Description: The ZZ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 13-Jun-2019)

Ref Expression
Hypotheses znzrh2.s S = RSpan ring
znzrh2.r ˙ = ring ~ QG S N
znzrh2.y Y = /N
znzrh2.2 L = ℤRHom Y
Assertion znzrhval N 0 A L A = A ˙

Proof

Step Hyp Ref Expression
1 znzrh2.s S = RSpan ring
2 znzrh2.r ˙ = ring ~ QG S N
3 znzrh2.y Y = /N
4 znzrh2.2 L = ℤRHom Y
5 1 2 3 4 znzrh2 N 0 L = x x ˙
6 5 fveq1d N 0 L A = x x ˙ A
7 eceq1 x = A x ˙ = A ˙
8 eqid x x ˙ = x x ˙
9 2 ovexi ˙ V
10 ecexg ˙ V A ˙ V
11 9 10 ax-mp A ˙ V
12 7 8 11 fvmpt A x x ˙ A = A ˙
13 6 12 sylan9eq N 0 A L A = A ˙