Database
ELEMENTARY NUMBER THEORY
Elementary properties of divisibility
Even and odd numbers
zob
Next ⟩
oddm1d2
Metamath Proof Explorer
Ascii
Unicode
Theorem
zob
Description:
Alternate characterizations of an odd number.
(Contributed by
AV
, 7-Jun-2020)
Ref
Expression
Assertion
zob
⊢
N
∈
ℤ
→
N
+
1
2
∈
ℤ
↔
N
−
1
2
∈
ℤ
Proof
Step
Hyp
Ref
Expression
1
peano2zm
⊢
N
+
1
2
∈
ℤ
→
N
+
1
2
−
1
∈
ℤ
2
peano2z
⊢
N
+
1
2
−
1
∈
ℤ
→
N
+
1
2
-
1
+
1
∈
ℤ
3
peano2z
⊢
N
∈
ℤ
→
N
+
1
∈
ℤ
4
3
zcnd
⊢
N
∈
ℤ
→
N
+
1
∈
ℂ
5
4
halfcld
⊢
N
∈
ℤ
→
N
+
1
2
∈
ℂ
6
npcan1
⊢
N
+
1
2
∈
ℂ
→
N
+
1
2
-
1
+
1
=
N
+
1
2
7
5
6
syl
⊢
N
∈
ℤ
→
N
+
1
2
-
1
+
1
=
N
+
1
2
8
7
eqcomd
⊢
N
∈
ℤ
→
N
+
1
2
=
N
+
1
2
-
1
+
1
9
8
eleq1d
⊢
N
∈
ℤ
→
N
+
1
2
∈
ℤ
↔
N
+
1
2
-
1
+
1
∈
ℤ
10
2
9
syl5ibr
⊢
N
∈
ℤ
→
N
+
1
2
−
1
∈
ℤ
→
N
+
1
2
∈
ℤ
11
1
10
impbid2
⊢
N
∈
ℤ
→
N
+
1
2
∈
ℤ
↔
N
+
1
2
−
1
∈
ℤ
12
zcn
⊢
N
∈
ℤ
→
N
∈
ℂ
13
xp1d2m1eqxm1d2
⊢
N
∈
ℂ
→
N
+
1
2
−
1
=
N
−
1
2
14
12
13
syl
⊢
N
∈
ℤ
→
N
+
1
2
−
1
=
N
−
1
2
15
14
eleq1d
⊢
N
∈
ℤ
→
N
+
1
2
−
1
∈
ℤ
↔
N
−
1
2
∈
ℤ
16
11
15
bitrd
⊢
N
∈
ℤ
→
N
+
1
2
∈
ℤ
↔
N
−
1
2
∈
ℤ