Metamath Proof Explorer


Theorem zob

Description: Alternate characterizations of an odd number. (Contributed by AV, 7-Jun-2020)

Ref Expression
Assertion zob N N + 1 2 N 1 2

Proof

Step Hyp Ref Expression
1 peano2zm N + 1 2 N + 1 2 1
2 peano2z N + 1 2 1 N + 1 2 - 1 + 1
3 peano2z N N + 1
4 3 zcnd N N + 1
5 4 halfcld N N + 1 2
6 npcan1 N + 1 2 N + 1 2 - 1 + 1 = N + 1 2
7 5 6 syl N N + 1 2 - 1 + 1 = N + 1 2
8 7 eqcomd N N + 1 2 = N + 1 2 - 1 + 1
9 8 eleq1d N N + 1 2 N + 1 2 - 1 + 1
10 2 9 syl5ibr N N + 1 2 1 N + 1 2
11 1 10 impbid2 N N + 1 2 N + 1 2 1
12 zcn N N
13 xp1d2m1eqxm1d2 N N + 1 2 1 = N 1 2
14 12 13 syl N N + 1 2 1 = N 1 2
15 14 eleq1d N N + 1 2 1 N 1 2
16 11 15 bitrd N N + 1 2 N 1 2