Metamath Proof Explorer


Theorem zorn2lem2

Description: Lemma for zorn2 . (Contributed by NM, 3-Apr-1997) (Revised by Mario Carneiro, 9-May-2015)

Ref Expression
Hypotheses zorn2lem.3 F = recs f V ι v C | u C ¬ u w v
zorn2lem.4 C = z A | g ran f g R z
zorn2lem.5 D = z A | g F x g R z
Assertion zorn2lem2 x On w We A D y x F y R F x

Proof

Step Hyp Ref Expression
1 zorn2lem.3 F = recs f V ι v C | u C ¬ u w v
2 zorn2lem.4 C = z A | g ran f g R z
3 zorn2lem.5 D = z A | g F x g R z
4 1 2 3 zorn2lem1 x On w We A D F x D
5 breq2 z = F x g R z g R F x
6 5 ralbidv z = F x g F x g R z g F x g R F x
7 6 3 elrab2 F x D F x A g F x g R F x
8 7 simprbi F x D g F x g R F x
9 4 8 syl x On w We A D g F x g R F x
10 1 tfr1 F Fn On
11 onss x On x On
12 fnfvima F Fn On x On y x F y F x
13 12 3expia F Fn On x On y x F y F x
14 10 11 13 sylancr x On y x F y F x
15 14 adantr x On w We A D y x F y F x
16 breq1 g = F y g R F x F y R F x
17 16 rspccv g F x g R F x F y F x F y R F x
18 9 15 17 sylsyld x On w We A D y x F y R F x