Metamath Proof Explorer


Theorem zorn2lem3

Description: Lemma for zorn2 . (Contributed by NM, 3-Apr-1997) (Revised by Mario Carneiro, 9-May-2015)

Ref Expression
Hypotheses zorn2lem.3 F = recs f V ι v C | u C ¬ u w v
zorn2lem.4 C = z A | g ran f g R z
zorn2lem.5 D = z A | g F x g R z
Assertion zorn2lem3 R Po A x On w We A D y x ¬ F x = F y

Proof

Step Hyp Ref Expression
1 zorn2lem.3 F = recs f V ι v C | u C ¬ u w v
2 zorn2lem.4 C = z A | g ran f g R z
3 zorn2lem.5 D = z A | g F x g R z
4 1 2 3 zorn2lem2 x On w We A D y x F y R F x
5 4 adantl R Po A x On w We A D y x F y R F x
6 3 ssrab3 D A
7 1 2 3 zorn2lem1 x On w We A D F x D
8 6 7 sselid x On w We A D F x A
9 breq1 F x = F y F x R F x F y R F x
10 9 biimprcd F y R F x F x = F y F x R F x
11 poirr R Po A F x A ¬ F x R F x
12 10 11 nsyli F y R F x R Po A F x A ¬ F x = F y
13 12 com12 R Po A F x A F y R F x ¬ F x = F y
14 8 13 sylan2 R Po A x On w We A D F y R F x ¬ F x = F y
15 5 14 syld R Po A x On w We A D y x ¬ F x = F y