Metamath Proof Explorer


Theorem zorn2lem6

Description: Lemma for zorn2 . (Contributed by NM, 4-Apr-1997) (Revised by Mario Carneiro, 9-May-2015)

Ref Expression
Hypotheses zorn2lem.3 F = recs f V ι v C | u C ¬ u w v
zorn2lem.4 C = z A | g ran f g R z
zorn2lem.5 D = z A | g F x g R z
zorn2lem.7 H = z A | g F y g R z
Assertion zorn2lem6 R Po A w We A x On y x H R Or F x

Proof

Step Hyp Ref Expression
1 zorn2lem.3 F = recs f V ι v C | u C ¬ u w v
2 zorn2lem.4 C = z A | g ran f g R z
3 zorn2lem.5 D = z A | g F x g R z
4 zorn2lem.7 H = z A | g F y g R z
5 poss F x A R Po A R Po F x
6 1 2 3 4 zorn2lem5 w We A x On y x H F x A
7 5 6 syl11 R Po A w We A x On y x H R Po F x
8 1 tfr1 F Fn On
9 fnfun F Fn On Fun F
10 fvelima Fun F s F x b x F b = s
11 df-rex b x F b = s b b x F b = s
12 10 11 sylib Fun F s F x b b x F b = s
13 12 ex Fun F s F x b b x F b = s
14 fvelima Fun F r F x a x F a = r
15 df-rex a x F a = r a a x F a = r
16 14 15 sylib Fun F r F x a a x F a = r
17 16 ex Fun F r F x a a x F a = r
18 13 17 anim12d Fun F s F x r F x b b x F b = s a a x F a = r
19 8 9 18 mp2b s F x r F x b b x F b = s a a x F a = r
20 an4 b x a x F b = s F a = r b x F b = s a x F a = r
21 20 2exbii b a b x a x F b = s F a = r b a b x F b = s a x F a = r
22 exdistrv b a b x F b = s a x F a = r b b x F b = s a a x F a = r
23 21 22 bitri b a b x a x F b = s F a = r b b x F b = s a a x F a = r
24 19 23 sylibr s F x r F x b a b x a x F b = s F a = r
25 4 neeq1i H z A | g F y g R z
26 25 ralbii y x H y x z A | g F y g R z
27 imaeq2 y = b F y = F b
28 27 raleqdv y = b g F y g R z g F b g R z
29 28 rabbidv y = b z A | g F y g R z = z A | g F b g R z
30 29 neeq1d y = b z A | g F y g R z z A | g F b g R z
31 30 rspccv y x z A | g F y g R z b x z A | g F b g R z
32 imaeq2 y = a F y = F a
33 32 raleqdv y = a g F y g R z g F a g R z
34 33 rabbidv y = a z A | g F y g R z = z A | g F a g R z
35 34 neeq1d y = a z A | g F y g R z z A | g F a g R z
36 35 rspccv y x z A | g F y g R z a x z A | g F a g R z
37 31 36 anim12d y x z A | g F y g R z b x a x z A | g F b g R z z A | g F a g R z
38 26 37 sylbi y x H b x a x z A | g F b g R z z A | g F a g R z
39 onelon x On b x b On
40 onelon x On a x a On
41 39 40 anim12dan x On b x a x b On a On
42 41 ex x On b x a x b On a On
43 eloni b On Ord b
44 eloni a On Ord a
45 ordtri3or Ord b Ord a b a b = a a b
46 43 44 45 syl2an b On a On b a b = a a b
47 eqid z A | g F a g R z = z A | g F a g R z
48 1 2 47 zorn2lem2 a On w We A z A | g F a g R z b a F b R F a
49 48 adantll b On a On w We A z A | g F a g R z b a F b R F a
50 breq12 F b = s F a = r F b R F a s R r
51 50 biimpcd F b R F a F b = s F a = r s R r
52 49 51 syl6 b On a On w We A z A | g F a g R z b a F b = s F a = r s R r
53 52 com23 b On a On w We A z A | g F a g R z F b = s F a = r b a s R r
54 53 adantrrl b On a On w We A z A | g F b g R z z A | g F a g R z F b = s F a = r b a s R r
55 54 imp b On a On w We A z A | g F b g R z z A | g F a g R z F b = s F a = r b a s R r
56 fveq2 b = a F b = F a
57 eqeq12 F b = s F a = r F b = F a s = r
58 56 57 syl5ib F b = s F a = r b = a s = r
59 58 adantl b On a On w We A z A | g F b g R z z A | g F a g R z F b = s F a = r b = a s = r
60 eqid z A | g F b g R z = z A | g F b g R z
61 1 2 60 zorn2lem2 b On w We A z A | g F b g R z a b F a R F b
62 61 adantlr b On a On w We A z A | g F b g R z a b F a R F b
63 breq12 F a = r F b = s F a R F b r R s
64 63 ancoms F b = s F a = r F a R F b r R s
65 64 biimpcd F a R F b F b = s F a = r r R s
66 62 65 syl6 b On a On w We A z A | g F b g R z a b F b = s F a = r r R s
67 66 com23 b On a On w We A z A | g F b g R z F b = s F a = r a b r R s
68 67 adantrrr b On a On w We A z A | g F b g R z z A | g F a g R z F b = s F a = r a b r R s
69 68 imp b On a On w We A z A | g F b g R z z A | g F a g R z F b = s F a = r a b r R s
70 55 59 69 3orim123d b On a On w We A z A | g F b g R z z A | g F a g R z F b = s F a = r b a b = a a b s R r s = r r R s
71 46 70 syl5 b On a On w We A z A | g F b g R z z A | g F a g R z F b = s F a = r b On a On s R r s = r r R s
72 71 exp31 b On a On w We A z A | g F b g R z z A | g F a g R z F b = s F a = r b On a On s R r s = r r R s
73 72 com4r b On a On b On a On w We A z A | g F b g R z z A | g F a g R z F b = s F a = r s R r s = r r R s
74 42 42 73 syl6c x On b x a x w We A z A | g F b g R z z A | g F a g R z F b = s F a = r s R r s = r r R s
75 74 exp4a x On b x a x w We A z A | g F b g R z z A | g F a g R z F b = s F a = r s R r s = r r R s
76 75 com3r w We A x On b x a x z A | g F b g R z z A | g F a g R z F b = s F a = r s R r s = r r R s
77 76 imp w We A x On b x a x z A | g F b g R z z A | g F a g R z F b = s F a = r s R r s = r r R s
78 77 a2d w We A x On b x a x z A | g F b g R z z A | g F a g R z b x a x F b = s F a = r s R r s = r r R s
79 38 78 syl5 w We A x On y x H b x a x F b = s F a = r s R r s = r r R s
80 79 imp4b w We A x On y x H b x a x F b = s F a = r s R r s = r r R s
81 80 exlimdvv w We A x On y x H b a b x a x F b = s F a = r s R r s = r r R s
82 24 81 syl5 w We A x On y x H s F x r F x s R r s = r r R s
83 82 ralrimivv w We A x On y x H s F x r F x s R r s = r r R s
84 7 83 jca2 R Po A w We A x On y x H R Po F x s F x r F x s R r s = r r R s
85 df-so R Or F x R Po F x s F x r F x s R r s = r r R s
86 84 85 syl6ibr R Po A w We A x On y x H R Or F x