Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
ZFC Set Theory - add the Axiom of Choice
AC equivalents: well-ordering, Zorn's lemma
zornn0
Metamath Proof Explorer
Description: Variant of Zorn's lemma zorn in which (/) , the union of the empty
chain, is not required to be an element of A . (Contributed by Jeff
Madsen , 5-Jan-2011)
Ref
Expression
Hypothesis
zornn0.1
⊢ A ∈ V
Assertion
zornn0
⊢ A ≠ ∅ ∧ ∀ z z ⊆ A ∧ z ≠ ∅ ∧ [⊂] Or z → ⋃ z ∈ A → ∃ x ∈ A ∀ y ∈ A ¬ x ⊂ y
Proof
Step
Hyp
Ref
Expression
1
zornn0.1
⊢ A ∈ V
2
numth3
⊢ A ∈ V → A ∈ dom ⁡ card
3
1 2
ax-mp
⊢ A ∈ dom ⁡ card
4
zornn0g
⊢ A ∈ dom ⁡ card ∧ A ≠ ∅ ∧ ∀ z z ⊆ A ∧ z ≠ ∅ ∧ [⊂] Or z → ⋃ z ∈ A → ∃ x ∈ A ∀ y ∈ A ¬ x ⊂ y
5
3 4
mp3an1
⊢ A ≠ ∅ ∧ ∀ z z ⊆ A ∧ z ≠ ∅ ∧ [⊂] Or z → ⋃ z ∈ A → ∃ x ∈ A ∀ y ∈ A ¬ x ⊂ y