Metamath Proof Explorer


Theorem zornn0g

Description: Variant of Zorn's lemma zorng in which (/) , the union of the empty chain, is not required to be an element of A . (Contributed by Jeff Madsen, 5-Jan-2011) (Revised by Mario Carneiro, 9-May-2015)

Ref Expression
Assertion zornn0g A dom card A z z A z [⊂] Or z z A x A y A ¬ x y

Proof

Step Hyp Ref Expression
1 simp2 A dom card A z z A z [⊂] Or z z A A
2 simp1 A dom card A z z A z [⊂] Or z z A A dom card
3 snfi Fin
4 finnum Fin dom card
5 3 4 ax-mp dom card
6 unnum A dom card dom card A dom card
7 2 5 6 sylancl A dom card A z z A z [⊂] Or z z A A dom card
8 uncom A = A
9 8 sseq2i w A w A
10 ssundif w A w A
11 9 10 bitri w A w A
12 difss w w
13 soss w w [⊂] Or w [⊂] Or w
14 12 13 ax-mp [⊂] Or w [⊂] Or w
15 ssdif0 w w =
16 uni0b w = w
17 16 biimpri w w =
18 17 eleq1d w w A A
19 15 18 sylbir w = w A A
20 19 imbi2d w = z z A z [⊂] Or z z A w A z z A z [⊂] Or z z A A
21 vex w V
22 21 difexi w V
23 sseq1 z = w z A w A
24 neeq1 z = w z w
25 soeq2 z = w [⊂] Or z [⊂] Or w
26 23 24 25 3anbi123d z = w z A z [⊂] Or z w A w [⊂] Or w
27 unieq z = w z = w
28 27 eleq1d z = w z A w A
29 26 28 imbi12d z = w z A z [⊂] Or z z A w A w [⊂] Or w w A
30 22 29 spcv z z A z [⊂] Or z z A w A w [⊂] Or w w A
31 30 com12 w A w [⊂] Or w z z A z [⊂] Or z z A w A
32 31 3expa w A w [⊂] Or w z z A z [⊂] Or z z A w A
33 32 an32s w A [⊂] Or w w z z A z [⊂] Or z z A w A
34 unidif0 w = w
35 34 eleq1i w A w A
36 elun1 w A w A
37 35 36 sylbi w A w A
38 33 37 syl6 w A [⊂] Or w w z z A z [⊂] Or z z A w A
39 0ex V
40 39 snid
41 elun2 A
42 40 41 ax-mp A
43 42 2a1i w A [⊂] Or w z z A z [⊂] Or z z A A
44 20 38 43 pm2.61ne w A [⊂] Or w z z A z [⊂] Or z z A w A
45 14 44 sylan2 w A [⊂] Or w z z A z [⊂] Or z z A w A
46 11 45 sylanb w A [⊂] Or w z z A z [⊂] Or z z A w A
47 46 com12 z z A z [⊂] Or z z A w A [⊂] Or w w A
48 47 alrimiv z z A z [⊂] Or z z A w w A [⊂] Or w w A
49 48 3ad2ant3 A dom card A z z A z [⊂] Or z z A w w A [⊂] Or w w A
50 zorng A dom card w w A [⊂] Or w w A x A y A ¬ x y
51 7 49 50 syl2anc A dom card A z z A z [⊂] Or z z A x A y A ¬ x y
52 ssun1 A A
53 ssralv A A y A ¬ x y y A ¬ x y
54 52 53 ax-mp y A ¬ x y y A ¬ x y
55 54 reximi x A y A ¬ x y x A y A ¬ x y
56 rexun x A y A ¬ x y x A y A ¬ x y x y A ¬ x y
57 simpr A x A y A ¬ x y x A y A ¬ x y
58 simpr A x y A ¬ x y x y A ¬ x y
59 psseq1 x = x y y
60 0pss y y
61 59 60 bitrdi x = x y y
62 61 notbid x = ¬ x y ¬ y
63 nne ¬ y y =
64 62 63 bitrdi x = ¬ x y y =
65 64 ralbidv x = y A ¬ x y y A y =
66 39 65 rexsn x y A ¬ x y y A y =
67 eqsn A A = y A y =
68 67 biimpar A y A y = A =
69 66 68 sylan2b A x y A ¬ x y A =
70 69 rexeqdv A x y A ¬ x y x A y A ¬ x y x y A ¬ x y
71 58 70 mpbird A x y A ¬ x y x A y A ¬ x y
72 57 71 jaodan A x A y A ¬ x y x y A ¬ x y x A y A ¬ x y
73 56 72 sylan2b A x A y A ¬ x y x A y A ¬ x y
74 55 73 sylan2 A x A y A ¬ x y x A y A ¬ x y
75 1 51 74 syl2anc A dom card A z z A z [⊂] Or z z A x A y A ¬ x y