Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
|
2 |
|
simp1 |
|
3 |
|
snfi |
|
4 |
|
finnum |
|
5 |
3 4
|
ax-mp |
|
6 |
|
unnum |
|
7 |
2 5 6
|
sylancl |
|
8 |
|
uncom |
|
9 |
8
|
sseq2i |
|
10 |
|
ssundif |
|
11 |
9 10
|
bitri |
|
12 |
|
difss |
|
13 |
|
soss |
|
14 |
12 13
|
ax-mp |
|
15 |
|
ssdif0 |
|
16 |
|
uni0b |
|
17 |
16
|
biimpri |
|
18 |
17
|
eleq1d |
|
19 |
15 18
|
sylbir |
|
20 |
19
|
imbi2d |
|
21 |
|
vex |
|
22 |
21
|
difexi |
|
23 |
|
sseq1 |
|
24 |
|
neeq1 |
|
25 |
|
soeq2 |
|
26 |
23 24 25
|
3anbi123d |
|
27 |
|
unieq |
|
28 |
27
|
eleq1d |
|
29 |
26 28
|
imbi12d |
|
30 |
22 29
|
spcv |
|
31 |
30
|
com12 |
|
32 |
31
|
3expa |
|
33 |
32
|
an32s |
|
34 |
|
unidif0 |
|
35 |
34
|
eleq1i |
|
36 |
|
elun1 |
|
37 |
35 36
|
sylbi |
|
38 |
33 37
|
syl6 |
|
39 |
|
0ex |
|
40 |
39
|
snid |
|
41 |
|
elun2 |
|
42 |
40 41
|
ax-mp |
|
43 |
42
|
2a1i |
|
44 |
20 38 43
|
pm2.61ne |
|
45 |
14 44
|
sylan2 |
|
46 |
11 45
|
sylanb |
|
47 |
46
|
com12 |
|
48 |
47
|
alrimiv |
|
49 |
48
|
3ad2ant3 |
|
50 |
|
zorng |
|
51 |
7 49 50
|
syl2anc |
|
52 |
|
ssun1 |
|
53 |
|
ssralv |
|
54 |
52 53
|
ax-mp |
|
55 |
54
|
reximi |
|
56 |
|
rexun |
|
57 |
|
simpr |
|
58 |
|
simpr |
|
59 |
|
psseq1 |
|
60 |
|
0pss |
|
61 |
59 60
|
bitrdi |
|
62 |
61
|
notbid |
|
63 |
|
nne |
|
64 |
62 63
|
bitrdi |
|
65 |
64
|
ralbidv |
|
66 |
39 65
|
rexsn |
|
67 |
|
eqsn |
|
68 |
67
|
biimpar |
|
69 |
66 68
|
sylan2b |
|
70 |
69
|
rexeqdv |
|
71 |
58 70
|
mpbird |
|
72 |
57 71
|
jaodan |
|
73 |
56 72
|
sylan2b |
|
74 |
55 73
|
sylan2 |
|
75 |
1 51 74
|
syl2anc |
|