Metamath Proof Explorer


Theorem zpnn0elfzo

Description: Membership of an integer increased by a nonnegative integer in a half- open integer range. (Contributed by Alexander van der Vekens, 22-Sep-2018)

Ref Expression
Assertion zpnn0elfzo Z N 0 Z + N Z ..^ Z + N + 1

Proof

Step Hyp Ref Expression
1 uzid Z Z Z
2 1 anim1i Z N 0 Z Z N 0
3 nn0z N 0 N
4 zaddcl Z N Z + N
5 3 4 sylan2 Z N 0 Z + N
6 elfzomin Z + N Z + N Z + N ..^ Z + N + 1
7 5 6 syl Z N 0 Z + N Z + N ..^ Z + N + 1
8 uzaddcl Z Z N 0 Z + N Z
9 fzoss1 Z + N Z Z + N ..^ Z + N + 1 Z ..^ Z + N + 1
10 8 9 syl Z Z N 0 Z + N ..^ Z + N + 1 Z ..^ Z + N + 1
11 10 sselda Z Z N 0 Z + N Z + N ..^ Z + N + 1 Z + N Z ..^ Z + N + 1
12 2 7 11 syl2anc Z N 0 Z + N Z ..^ Z + N + 1