Metamath Proof Explorer


Theorem zpnn0elfzo1

Description: Membership of an integer increased by a nonnegative integer in a half- open integer range. (Contributed by Alexander van der Vekens, 22-Sep-2018)

Ref Expression
Assertion zpnn0elfzo1 Z N 0 Z + N Z ..^ Z + N + 1

Proof

Step Hyp Ref Expression
1 zpnn0elfzo Z N 0 Z + N Z ..^ Z + N + 1
2 zcn Z Z
3 2 adantr Z N 0 Z
4 nn0cn N 0 N
5 4 adantl Z N 0 N
6 1cnd Z N 0 1
7 3 5 6 addassd Z N 0 Z + N + 1 = Z + N + 1
8 7 oveq2d Z N 0 Z ..^ Z + N + 1 = Z ..^ Z + N + 1
9 1 8 eleqtrd Z N 0 Z + N Z ..^ Z + N + 1