Metamath Proof Explorer


Theorem zprodn0

Description: Nonzero series product with index set a subset of the upper integers. (Contributed by Scott Fenton, 6-Dec-2017)

Ref Expression
Hypotheses zprodn0.1 Z = M
zprodn0.2 φ M
zprodn0.3 φ X 0
zprodn0.4 φ seq M × F X
zprodn0.5 φ A Z
zprodn0.6 φ k Z F k = if k A B 1
zprodn0.7 φ k A B
Assertion zprodn0 φ k A B = X

Proof

Step Hyp Ref Expression
1 zprodn0.1 Z = M
2 zprodn0.2 φ M
3 zprodn0.3 φ X 0
4 zprodn0.4 φ seq M × F X
5 zprodn0.5 φ A Z
6 zprodn0.6 φ k Z F k = if k A B 1
7 zprodn0.7 φ k A B
8 1 2 4 3 ntrivcvgn0 φ m Z x x 0 seq m × F x
9 1 2 8 5 6 7 zprod φ k A B = seq M × F
10 fclim : dom
11 ffun : dom Fun
12 10 11 ax-mp Fun
13 funbrfv Fun seq M × F X seq M × F = X
14 12 4 13 mpsyl φ seq M × F = X
15 9 14 eqtrd φ k A B = X