Database
BASIC ALGEBRAIC STRUCTURES
The complex numbers as an algebraic extensible structure
Algebraic constructions based on the complex numbers
zrh0
Next ⟩
zrhpropd
Metamath Proof Explorer
Ascii
Unicode
Theorem
zrh0
Description:
Interpretation of 0 in a ring.
(Contributed by
Stefan O'Rear
, 6-Sep-2015)
Ref
Expression
Hypotheses
zrh0.l
⊢
L
=
ℤRHom
⁡
R
zrh0.z
⊢
0
˙
=
0
R
Assertion
zrh0
⊢
R
∈
Ring
→
L
⁡
0
=
0
˙
Proof
Step
Hyp
Ref
Expression
1
zrh0.l
⊢
L
=
ℤRHom
⁡
R
2
zrh0.z
⊢
0
˙
=
0
R
3
1
zrhrhm
⊢
R
∈
Ring
→
L
∈
ℤ
ring
RingHom
R
4
rhmghm
⊢
L
∈
ℤ
ring
RingHom
R
→
L
∈
ℤ
ring
GrpHom
R
5
zring0
⊢
0
=
0
ℤ
ring
6
5
2
ghmid
⊢
L
∈
ℤ
ring
GrpHom
R
→
L
⁡
0
=
0
˙
7
3
4
6
3syl
⊢
R
∈
Ring
→
L
⁡
0
=
0
˙