Metamath Proof Explorer


Theorem zrh0

Description: Interpretation of 0 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses zrh0.l L = ℤRHom R
zrh0.z 0 ˙ = 0 R
Assertion zrh0 R Ring L 0 = 0 ˙

Proof

Step Hyp Ref Expression
1 zrh0.l L = ℤRHom R
2 zrh0.z 0 ˙ = 0 R
3 1 zrhrhm R Ring L ring RingHom R
4 rhmghm L ring RingHom R L ring GrpHom R
5 zring0 0 = 0 ring
6 5 2 ghmid L ring GrpHom R L 0 = 0 ˙
7 3 4 6 3syl R Ring L 0 = 0 ˙