Metamath Proof Explorer


Theorem zrh1

Description: Interpretation of 1 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses zrh1.l L = ℤRHom R
zrh1.o 1 ˙ = 1 R
Assertion zrh1 R Ring L 1 = 1 ˙

Proof

Step Hyp Ref Expression
1 zrh1.l L = ℤRHom R
2 zrh1.o 1 ˙ = 1 R
3 1 zrhrhm R Ring L ring RingHom R
4 zring1 1 = 1 ring
5 4 2 rhm1 L ring RingHom R L 1 = 1 ˙
6 3 5 syl R Ring L 1 = 1 ˙