Database
BASIC ALGEBRAIC STRUCTURES
The complex numbers as an algebraic extensible structure
Algebraic constructions based on the complex numbers
zrh1
Next ⟩
zrh0
Metamath Proof Explorer
Ascii
Unicode
Theorem
zrh1
Description:
Interpretation of 1 in a ring.
(Contributed by
Stefan O'Rear
, 6-Sep-2015)
Ref
Expression
Hypotheses
zrh1.l
⊢
L
=
ℤRHom
⁡
R
zrh1.o
⊢
1
˙
=
1
R
Assertion
zrh1
⊢
R
∈
Ring
→
L
⁡
1
=
1
˙
Proof
Step
Hyp
Ref
Expression
1
zrh1.l
⊢
L
=
ℤRHom
⁡
R
2
zrh1.o
⊢
1
˙
=
1
R
3
1
zrhrhm
⊢
R
∈
Ring
→
L
∈
ℤ
ring
RingHom
R
4
zring1
⊢
1
=
1
ℤ
ring
5
4
2
rhm1
⊢
L
∈
ℤ
ring
RingHom
R
→
L
⁡
1
=
1
˙
6
3
5
syl
⊢
R
∈
Ring
→
L
⁡
1
=
1
˙