Metamath Proof Explorer


Theorem zrhcopsgnelbas

Description: Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019) (Proof shortened by AV, 3-Jul-2022)

Ref Expression
Hypotheses zrhpsgnelbas.p P = Base SymGrp N
zrhpsgnelbas.s S = pmSgn N
zrhpsgnelbas.y Y = ℤRHom R
Assertion zrhcopsgnelbas R Ring N Fin Q P Y S Q Base R

Proof

Step Hyp Ref Expression
1 zrhpsgnelbas.p P = Base SymGrp N
2 zrhpsgnelbas.s S = pmSgn N
3 zrhpsgnelbas.y Y = ℤRHom R
4 1 2 cofipsgn N Fin Q P Y S Q = Y S Q
5 4 3adant1 R Ring N Fin Q P Y S Q = Y S Q
6 1 2 3 zrhpsgnelbas R Ring N Fin Q P Y S Q Base R
7 5 6 eqeltrd R Ring N Fin Q P Y S Q Base R