Metamath Proof Explorer


Theorem zrhmulg

Description: Value of the ZRHom homomorphism. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses zrhval.l L = ℤRHom R
zrhval2.m · ˙ = R
zrhval2.1 1 ˙ = 1 R
Assertion zrhmulg R Ring N L N = N · ˙ 1 ˙

Proof

Step Hyp Ref Expression
1 zrhval.l L = ℤRHom R
2 zrhval2.m · ˙ = R
3 zrhval2.1 1 ˙ = 1 R
4 1 2 3 zrhval2 R Ring L = n n · ˙ 1 ˙
5 4 fveq1d R Ring L N = n n · ˙ 1 ˙ N
6 oveq1 n = N n · ˙ 1 ˙ = N · ˙ 1 ˙
7 eqid n n · ˙ 1 ˙ = n n · ˙ 1 ˙
8 ovex N · ˙ 1 ˙ V
9 6 7 8 fvmpt N n n · ˙ 1 ˙ N = N · ˙ 1 ˙
10 5 9 sylan9eq R Ring N L N = N · ˙ 1 ˙