Database
BASIC ALGEBRAIC STRUCTURES
The complex numbers as an algebraic extensible structure
Algebraic constructions based on the complex numbers
zrhmulg
Next ⟩
zrhrhmb
Metamath Proof Explorer
Ascii
Unicode
Theorem
zrhmulg
Description:
Value of the
ZRHom
homomorphism.
(Contributed by
Mario Carneiro
, 14-Jun-2015)
Ref
Expression
Hypotheses
zrhval.l
⊢
L
=
ℤRHom
⁡
R
zrhval2.m
⊢
·
˙
=
⋅
R
zrhval2.1
⊢
1
˙
=
1
R
Assertion
zrhmulg
⊢
R
∈
Ring
∧
N
∈
ℤ
→
L
⁡
N
=
N
·
˙
1
˙
Proof
Step
Hyp
Ref
Expression
1
zrhval.l
⊢
L
=
ℤRHom
⁡
R
2
zrhval2.m
⊢
·
˙
=
⋅
R
3
zrhval2.1
⊢
1
˙
=
1
R
4
1
2
3
zrhval2
⊢
R
∈
Ring
→
L
=
n
∈
ℤ
⟼
n
·
˙
1
˙
5
4
fveq1d
⊢
R
∈
Ring
→
L
⁡
N
=
n
∈
ℤ
⟼
n
·
˙
1
˙
⁡
N
6
oveq1
⊢
n
=
N
→
n
·
˙
1
˙
=
N
·
˙
1
˙
7
eqid
⊢
n
∈
ℤ
⟼
n
·
˙
1
˙
=
n
∈
ℤ
⟼
n
·
˙
1
˙
8
ovex
⊢
N
·
˙
1
˙
∈
V
9
6
7
8
fvmpt
⊢
N
∈
ℤ
→
n
∈
ℤ
⟼
n
·
˙
1
˙
⁡
N
=
N
·
˙
1
˙
10
5
9
sylan9eq
⊢
R
∈
Ring
∧
N
∈
ℤ
→
L
⁡
N
=
N
·
˙
1
˙