Metamath Proof Explorer


Theorem zrhpropd

Description: The ZZ ring homomorphism depends only on the ring attributes of a structure. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypotheses zrhpropd.1 φ B = Base K
zrhpropd.2 φ B = Base L
zrhpropd.3 φ x B y B x + K y = x + L y
zrhpropd.4 φ x B y B x K y = x L y
Assertion zrhpropd φ ℤRHom K = ℤRHom L

Proof

Step Hyp Ref Expression
1 zrhpropd.1 φ B = Base K
2 zrhpropd.2 φ B = Base L
3 zrhpropd.3 φ x B y B x + K y = x + L y
4 zrhpropd.4 φ x B y B x K y = x L y
5 eqidd φ Base ring = Base ring
6 eqidd φ x Base ring y Base ring x + ring y = x + ring y
7 eqidd φ x Base ring y Base ring x ring y = x ring y
8 5 1 5 2 6 3 7 4 rhmpropd φ ring RingHom K = ring RingHom L
9 8 unieqd φ ring RingHom K = ring RingHom L
10 eqid ℤRHom K = ℤRHom K
11 10 zrhval ℤRHom K = ring RingHom K
12 eqid ℤRHom L = ℤRHom L
13 12 zrhval ℤRHom L = ring RingHom L
14 9 11 13 3eqtr4g φ ℤRHom K = ℤRHom L