Metamath Proof Explorer


Theorem zrhpsgnevpm

Description: The sign of an even permutation embedded into a ring is the multiplicative neutral element of the ring. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses zrhpsgnevpm.y Y = ℤRHom R
zrhpsgnevpm.s S = pmSgn N
zrhpsgnevpm.o 1 ˙ = 1 R
Assertion zrhpsgnevpm R Ring N Fin F pmEven N Y S F = 1 ˙

Proof

Step Hyp Ref Expression
1 zrhpsgnevpm.y Y = ℤRHom R
2 zrhpsgnevpm.s S = pmSgn N
3 zrhpsgnevpm.o 1 ˙ = 1 R
4 eqid SymGrp N = SymGrp N
5 eqid mulGrp fld 𝑠 1 1 = mulGrp fld 𝑠 1 1
6 4 2 5 psgnghm2 N Fin S SymGrp N GrpHom mulGrp fld 𝑠 1 1
7 eqid Base SymGrp N = Base SymGrp N
8 eqid Base mulGrp fld 𝑠 1 1 = Base mulGrp fld 𝑠 1 1
9 7 8 ghmf S SymGrp N GrpHom mulGrp fld 𝑠 1 1 S : Base SymGrp N Base mulGrp fld 𝑠 1 1
10 6 9 syl N Fin S : Base SymGrp N Base mulGrp fld 𝑠 1 1
11 10 3ad2ant2 R Ring N Fin F pmEven N S : Base SymGrp N Base mulGrp fld 𝑠 1 1
12 4 7 evpmss pmEven N Base SymGrp N
13 12 sseli F pmEven N F Base SymGrp N
14 13 3ad2ant3 R Ring N Fin F pmEven N F Base SymGrp N
15 fvco3 S : Base SymGrp N Base mulGrp fld 𝑠 1 1 F Base SymGrp N Y S F = Y S F
16 11 14 15 syl2anc R Ring N Fin F pmEven N Y S F = Y S F
17 4 7 2 psgnevpm N Fin F pmEven N S F = 1
18 17 3adant1 R Ring N Fin F pmEven N S F = 1
19 18 fveq2d R Ring N Fin F pmEven N Y S F = Y 1
20 1 3 zrh1 R Ring Y 1 = 1 ˙
21 20 3ad2ant1 R Ring N Fin F pmEven N Y 1 = 1 ˙
22 16 19 21 3eqtrd R Ring N Fin F pmEven N Y S F = 1 ˙