Metamath Proof Explorer


Theorem zrhpsgninv

Description: The embedded sign of a permutation equals the embedded sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses zrhpsgninv.p P = Base SymGrp N
zrhpsgninv.y Y = ℤRHom R
zrhpsgninv.s S = pmSgn N
Assertion zrhpsgninv R Ring N Fin F P Y S F -1 = Y S F

Proof

Step Hyp Ref Expression
1 zrhpsgninv.p P = Base SymGrp N
2 zrhpsgninv.y Y = ℤRHom R
3 zrhpsgninv.s S = pmSgn N
4 eqid SymGrp N = SymGrp N
5 4 3 1 psgninv N Fin F P S F -1 = S F
6 5 3adant1 R Ring N Fin F P S F -1 = S F
7 6 fveq2d R Ring N Fin F P Y S F -1 = Y S F
8 eqid mulGrp fld 𝑠 1 1 = mulGrp fld 𝑠 1 1
9 4 3 8 psgnghm2 N Fin S SymGrp N GrpHom mulGrp fld 𝑠 1 1
10 eqid Base mulGrp fld 𝑠 1 1 = Base mulGrp fld 𝑠 1 1
11 1 10 ghmf S SymGrp N GrpHom mulGrp fld 𝑠 1 1 S : P Base mulGrp fld 𝑠 1 1
12 9 11 syl N Fin S : P Base mulGrp fld 𝑠 1 1
13 12 3ad2ant2 R Ring N Fin F P S : P Base mulGrp fld 𝑠 1 1
14 eqid inv g SymGrp N = inv g SymGrp N
15 4 1 14 symginv F P inv g SymGrp N F = F -1
16 15 3ad2ant3 R Ring N Fin F P inv g SymGrp N F = F -1
17 4 symggrp N Fin SymGrp N Grp
18 17 3ad2ant2 R Ring N Fin F P SymGrp N Grp
19 simp3 R Ring N Fin F P F P
20 1 14 grpinvcl SymGrp N Grp F P inv g SymGrp N F P
21 18 19 20 syl2anc R Ring N Fin F P inv g SymGrp N F P
22 16 21 eqeltrrd R Ring N Fin F P F -1 P
23 fvco3 S : P Base mulGrp fld 𝑠 1 1 F -1 P Y S F -1 = Y S F -1
24 13 22 23 syl2anc R Ring N Fin F P Y S F -1 = Y S F -1
25 fvco3 S : P Base mulGrp fld 𝑠 1 1 F P Y S F = Y S F
26 13 19 25 syl2anc R Ring N Fin F P Y S F = Y S F
27 7 24 26 3eqtr4d R Ring N Fin F P Y S F -1 = Y S F