Metamath Proof Explorer


Theorem zrhpsgnmhm

Description: Embedding of permutation signs into an arbitrary ring is a homomorphism. (Contributed by SO, 9-Jul-2018)

Ref Expression
Assertion zrhpsgnmhm R Ring A Fin ℤRHom R pmSgn A SymGrp A MndHom mulGrp R

Proof

Step Hyp Ref Expression
1 eqid ℤRHom R = ℤRHom R
2 1 zrhrhm R Ring ℤRHom R ring RingHom R
3 eqid mulGrp ring = mulGrp ring
4 eqid mulGrp R = mulGrp R
5 3 4 rhmmhm ℤRHom R ring RingHom R ℤRHom R mulGrp ring MndHom mulGrp R
6 2 5 syl R Ring ℤRHom R mulGrp ring MndHom mulGrp R
7 eqid SymGrp A = SymGrp A
8 eqid pmSgn A = pmSgn A
9 eqid mulGrp fld 𝑠 1 1 = mulGrp fld 𝑠 1 1
10 7 8 9 psgnghm2 A Fin pmSgn A SymGrp A GrpHom mulGrp fld 𝑠 1 1
11 ghmmhm pmSgn A SymGrp A GrpHom mulGrp fld 𝑠 1 1 pmSgn A SymGrp A MndHom mulGrp fld 𝑠 1 1
12 10 11 syl A Fin pmSgn A SymGrp A MndHom mulGrp fld 𝑠 1 1
13 eqid mulGrp fld 𝑠 0 = mulGrp fld 𝑠 0
14 13 cnmsgnsubg 1 1 SubGrp mulGrp fld 𝑠 0
15 subgsubm 1 1 SubGrp mulGrp fld 𝑠 0 1 1 SubMnd mulGrp fld 𝑠 0
16 14 15 ax-mp 1 1 SubMnd mulGrp fld 𝑠 0
17 cnring fld Ring
18 cnfldbas = Base fld
19 cnfld0 0 = 0 fld
20 cndrng fld DivRing
21 18 19 20 drngui 0 = Unit fld
22 eqid mulGrp fld = mulGrp fld
23 21 22 unitsubm fld Ring 0 SubMnd mulGrp fld
24 13 subsubm 0 SubMnd mulGrp fld 1 1 SubMnd mulGrp fld 𝑠 0 1 1 SubMnd mulGrp fld 1 1 0
25 17 23 24 mp2b 1 1 SubMnd mulGrp fld 𝑠 0 1 1 SubMnd mulGrp fld 1 1 0
26 16 25 mpbi 1 1 SubMnd mulGrp fld 1 1 0
27 26 simpli 1 1 SubMnd mulGrp fld
28 1z 1
29 neg1z 1
30 prssi 1 1 1 1
31 28 29 30 mp2an 1 1
32 zsubrg SubRing fld
33 22 subrgsubm SubRing fld SubMnd mulGrp fld
34 zringmpg mulGrp fld 𝑠 = mulGrp ring
35 34 eqcomi mulGrp ring = mulGrp fld 𝑠
36 35 subsubm SubMnd mulGrp fld 1 1 SubMnd mulGrp ring 1 1 SubMnd mulGrp fld 1 1
37 32 33 36 mp2b 1 1 SubMnd mulGrp ring 1 1 SubMnd mulGrp fld 1 1
38 27 31 37 mpbir2an 1 1 SubMnd mulGrp ring
39 zex V
40 ressabs V 1 1 mulGrp fld 𝑠 𝑠 1 1 = mulGrp fld 𝑠 1 1
41 39 31 40 mp2an mulGrp fld 𝑠 𝑠 1 1 = mulGrp fld 𝑠 1 1
42 34 oveq1i mulGrp fld 𝑠 𝑠 1 1 = mulGrp ring 𝑠 1 1
43 41 42 eqtr3i mulGrp fld 𝑠 1 1 = mulGrp ring 𝑠 1 1
44 43 resmhm2 pmSgn A SymGrp A MndHom mulGrp fld 𝑠 1 1 1 1 SubMnd mulGrp ring pmSgn A SymGrp A MndHom mulGrp ring
45 12 38 44 sylancl A Fin pmSgn A SymGrp A MndHom mulGrp ring
46 mhmco ℤRHom R mulGrp ring MndHom mulGrp R pmSgn A SymGrp A MndHom mulGrp ring ℤRHom R pmSgn A SymGrp A MndHom mulGrp R
47 6 45 46 syl2an R Ring A Fin ℤRHom R pmSgn A SymGrp A MndHom mulGrp R