Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
1
|
zrhrhm |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
3 4
|
rhmmhm |
|
6 |
2 5
|
syl |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
7 8 9
|
psgnghm2 |
|
11 |
|
ghmmhm |
|
12 |
10 11
|
syl |
|
13 |
|
eqid |
|
14 |
13
|
cnmsgnsubg |
|
15 |
|
subgsubm |
|
16 |
14 15
|
ax-mp |
|
17 |
|
cnring |
|
18 |
|
cnfldbas |
|
19 |
|
cnfld0 |
|
20 |
|
cndrng |
|
21 |
18 19 20
|
drngui |
|
22 |
|
eqid |
|
23 |
21 22
|
unitsubm |
|
24 |
13
|
subsubm |
|
25 |
17 23 24
|
mp2b |
|
26 |
16 25
|
mpbi |
|
27 |
26
|
simpli |
|
28 |
|
1z |
|
29 |
|
neg1z |
|
30 |
|
prssi |
|
31 |
28 29 30
|
mp2an |
|
32 |
|
zsubrg |
|
33 |
22
|
subrgsubm |
|
34 |
|
zringmpg |
|
35 |
34
|
eqcomi |
|
36 |
35
|
subsubm |
|
37 |
32 33 36
|
mp2b |
|
38 |
27 31 37
|
mpbir2an |
|
39 |
|
zex |
|
40 |
|
ressabs |
|
41 |
39 31 40
|
mp2an |
|
42 |
34
|
oveq1i |
|
43 |
41 42
|
eqtr3i |
|
44 |
43
|
resmhm2 |
|
45 |
12 38 44
|
sylancl |
|
46 |
|
mhmco |
|
47 |
6 45 46
|
syl2an |
|