Metamath Proof Explorer


Theorem zrhrhmb

Description: The ZRHom homomorphism is the unique ring homomorphism from Z . (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 12-Jun-2019)

Ref Expression
Hypothesis zrhval.l L = ℤRHom R
Assertion zrhrhmb R Ring F ring RingHom R F = L

Proof

Step Hyp Ref Expression
1 zrhval.l L = ℤRHom R
2 eqid R = R
3 eqid n n R 1 R = n n R 1 R
4 eqid 1 R = 1 R
5 2 3 4 mulgrhm2 R Ring ring RingHom R = n n R 1 R
6 1 2 4 zrhval2 R Ring L = n n R 1 R
7 6 sneqd R Ring L = n n R 1 R
8 5 7 eqtr4d R Ring ring RingHom R = L
9 8 eleq2d R Ring F ring RingHom R F L
10 1 fvexi L V
11 10 elsn2 F L F = L
12 9 11 bitrdi R Ring F ring RingHom R F = L