Metamath Proof Explorer


Theorem zrhrhmb

Description: The ZRHom homomorphism is the unique ring homomorphism from Z . (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 12-Jun-2019)

Ref Expression
Hypothesis zrhval.l L=ℤRHomR
Assertion zrhrhmb RRingFringRingHomRF=L

Proof

Step Hyp Ref Expression
1 zrhval.l L=ℤRHomR
2 eqid R=R
3 eqid nnR1R=nnR1R
4 eqid 1R=1R
5 2 3 4 mulgrhm2 RRingringRingHomR=nnR1R
6 1 2 4 zrhval2 RRingL=nnR1R
7 6 sneqd RRingL=nnR1R
8 5 7 eqtr4d RRingringRingHomR=L
9 8 eleq2d RRingFringRingHomRFL
10 1 fvexi LV
11 10 elsn2 FLF=L
12 9 11 bitrdi RRingFringRingHomRF=L