Database
BASIC ALGEBRAIC STRUCTURES
The complex numbers as an algebraic extensible structure
Algebraic constructions based on the complex numbers
zrhval2
Next ⟩
zrhmulg
Metamath Proof Explorer
Ascii
Unicode
Theorem
zrhval2
Description:
Alternate value of the
ZRHom
homomorphism.
(Contributed by
Mario Carneiro
, 12-Jun-2015)
Ref
Expression
Hypotheses
zrhval.l
⊢
L
=
ℤRHom
⁡
R
zrhval2.m
⊢
·
˙
=
⋅
R
zrhval2.1
⊢
1
˙
=
1
R
Assertion
zrhval2
⊢
R
∈
Ring
→
L
=
n
∈
ℤ
⟼
n
·
˙
1
˙
Proof
Step
Hyp
Ref
Expression
1
zrhval.l
⊢
L
=
ℤRHom
⁡
R
2
zrhval2.m
⊢
·
˙
=
⋅
R
3
zrhval2.1
⊢
1
˙
=
1
R
4
1
zrhval
⊢
L
=
⋃
ℤ
ring
RingHom
R
5
eqid
⊢
n
∈
ℤ
⟼
n
·
˙
1
˙
=
n
∈
ℤ
⟼
n
·
˙
1
˙
6
2
5
3
mulgrhm2
⊢
R
∈
Ring
→
ℤ
ring
RingHom
R
=
n
∈
ℤ
⟼
n
·
˙
1
˙
7
6
unieqd
⊢
R
∈
Ring
→
⋃
ℤ
ring
RingHom
R
=
⋃
n
∈
ℤ
⟼
n
·
˙
1
˙
8
zex
⊢
ℤ
∈
V
9
8
mptex
⊢
n
∈
ℤ
⟼
n
·
˙
1
˙
∈
V
10
9
unisn
⊢
⋃
n
∈
ℤ
⟼
n
·
˙
1
˙
=
n
∈
ℤ
⟼
n
·
˙
1
˙
11
7
10
eqtrdi
⊢
R
∈
Ring
→
⋃
ℤ
ring
RingHom
R
=
n
∈
ℤ
⟼
n
·
˙
1
˙
12
4
11
eqtrid
⊢
R
∈
Ring
→
L
=
n
∈
ℤ
⟼
n
·
˙
1
˙