Metamath Proof Explorer


Theorem zrhval2

Description: Alternate value of the ZRHom homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses zrhval.l L = ℤRHom R
zrhval2.m · ˙ = R
zrhval2.1 1 ˙ = 1 R
Assertion zrhval2 R Ring L = n n · ˙ 1 ˙

Proof

Step Hyp Ref Expression
1 zrhval.l L = ℤRHom R
2 zrhval2.m · ˙ = R
3 zrhval2.1 1 ˙ = 1 R
4 1 zrhval L = ring RingHom R
5 eqid n n · ˙ 1 ˙ = n n · ˙ 1 ˙
6 2 5 3 mulgrhm2 R Ring ring RingHom R = n n · ˙ 1 ˙
7 6 unieqd R Ring ring RingHom R = n n · ˙ 1 ˙
8 zex V
9 8 mptex n n · ˙ 1 ˙ V
10 9 unisn n n · ˙ 1 ˙ = n n · ˙ 1 ˙
11 7 10 eqtrdi R Ring ring RingHom R = n n · ˙ 1 ˙
12 4 11 eqtrid R Ring L = n n · ˙ 1 ˙