Metamath Proof Explorer


Theorem zringcyg

Description: The integers are a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by AV, 9-Jun-2019)

Ref Expression
Assertion zringcyg ring CycGrp

Proof

Step Hyp Ref Expression
1 zringbas = Base ring
2 eqid ring = ring
3 zsubrg SubRing fld
4 subrgsubg SubRing fld SubGrp fld
5 3 4 ax-mp SubGrp fld
6 df-zring ring = fld 𝑠
7 6 subggrp SubGrp fld ring Grp
8 5 7 mp1i ring Grp
9 1zzd 1
10 ax-1cn 1
11 cnfldmulg x 1 x fld 1 = x 1
12 10 11 mpan2 x x fld 1 = x 1
13 1z 1
14 eqid fld = fld
15 14 6 2 subgmulg SubGrp fld x 1 x fld 1 = x ring 1
16 5 13 15 mp3an13 x x fld 1 = x ring 1
17 zcn x x
18 17 mulid1d x x 1 = x
19 12 16 18 3eqtr3rd x x = x ring 1
20 oveq1 z = x z ring 1 = x ring 1
21 20 rspceeqv x x = x ring 1 z x = z ring 1
22 19 21 mpdan x z x = z ring 1
23 22 adantl x z x = z ring 1
24 1 2 8 9 23 iscygd ring CycGrp
25 24 mptru ring CycGrp