Metamath Proof Explorer


Theorem zringidom

Description: The ring of integers is an integral domain. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Assertion zringidom ring IDomn

Proof

Step Hyp Ref Expression
1 zringcrng ring CRing
2 zringnzr ring NzRing
3 eldifi x 0 x
4 3 ad2antrr x 0 y x y = 0 x
5 4 zcnd x 0 y x y = 0 x
6 simplr x 0 y x y = 0 y
7 6 zcnd x 0 y x y = 0 y
8 simpr x 0 y x y = 0 x y = 0
9 mul0or x y x y = 0 x = 0 y = 0
10 9 biimpa x y x y = 0 x = 0 y = 0
11 5 7 8 10 syl21anc x 0 y x y = 0 x = 0 y = 0
12 eldifsni x 0 x 0
13 12 ad2antrr x 0 y x y = 0 x 0
14 13 neneqd x 0 y x y = 0 ¬ x = 0
15 11 14 orcnd x 0 y x y = 0 y = 0
16 15 ex x 0 y x y = 0 y = 0
17 16 ralrimiva x 0 y x y = 0 y = 0
18 eqid RLReg ring = RLReg ring
19 zringbas = Base ring
20 zringmulr × = ring
21 zring0 0 = 0 ring
22 18 19 20 21 isrrg x RLReg ring x y x y = 0 y = 0
23 3 17 22 sylanbrc x 0 x RLReg ring
24 23 ssriv 0 RLReg ring
25 19 18 21 isdomn2 ring Domn ring NzRing 0 RLReg ring
26 2 24 25 mpbir2an ring Domn
27 isidom ring IDomn ring CRing ring Domn
28 1 26 27 mpbir2an ring IDomn