Metamath Proof Explorer


Theorem zringlpir

Description: The integers are a principal ideal ring. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by AV, 9-Jun-2019) (Proof shortened by AV, 27-Sep-2020)

Ref Expression
Assertion zringlpir ring LPIR

Proof

Step Hyp Ref Expression
1 zringring ring Ring
2 eleq1 x = 0 x LPIdeal ring 0 LPIdeal ring
3 simpl x LIdeal ring x 0 x LIdeal ring
4 simpr x LIdeal ring x 0 x 0
5 eqid sup x < = sup x <
6 3 4 5 zringlpirlem2 x LIdeal ring x 0 sup x < x
7 simpll x LIdeal ring x 0 z x x LIdeal ring
8 simplr x LIdeal ring x 0 z x x 0
9 simpr x LIdeal ring x 0 z x z x
10 7 8 5 9 zringlpirlem3 x LIdeal ring x 0 z x sup x < z
11 10 ralrimiva x LIdeal ring x 0 z x sup x < z
12 breq1 y = sup x < y z sup x < z
13 12 ralbidv y = sup x < z x y z z x sup x < z
14 13 rspcev sup x < x z x sup x < z y x z x y z
15 6 11 14 syl2anc x LIdeal ring x 0 y x z x y z
16 eqid LIdeal ring = LIdeal ring
17 eqid LPIdeal ring = LPIdeal ring
18 dvdsrzring = r ring
19 16 17 18 lpigen ring Ring x LIdeal ring x LPIdeal ring y x z x y z
20 1 19 mpan x LIdeal ring x LPIdeal ring y x z x y z
21 20 adantr x LIdeal ring x 0 x LPIdeal ring y x z x y z
22 15 21 mpbird x LIdeal ring x 0 x LPIdeal ring
23 zring0 0 = 0 ring
24 17 23 lpi0 ring Ring 0 LPIdeal ring
25 1 24 mp1i x LIdeal ring 0 LPIdeal ring
26 2 22 25 pm2.61ne x LIdeal ring x LPIdeal ring
27 26 ssriv LIdeal ring LPIdeal ring
28 17 16 islpir2 ring LPIR ring Ring LIdeal ring LPIdeal ring
29 1 27 28 mpbir2an ring LPIR