Description: Lemma for zringlpir . A nonzero ideal of integers contains some positive integers. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by AV, 9-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | zringlpirlem.i | |
|
zringlpirlem.n0 | |
||
Assertion | zringlpirlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zringlpirlem.i | |
|
2 | zringlpirlem.n0 | |
|
3 | simplr | |
|
4 | eleq1 | |
|
5 | 3 4 | syl5ibrcom | |
6 | zsubrg | |
|
7 | subrgsubg | |
|
8 | 6 7 | ax-mp | |
9 | zringbas | |
|
10 | eqid | |
|
11 | 9 10 | lidlss | |
12 | 1 11 | syl | |
13 | 12 | sselda | |
14 | df-zring | |
|
15 | eqid | |
|
16 | eqid | |
|
17 | 14 15 16 | subginv | |
18 | 8 13 17 | sylancr | |
19 | 13 | zcnd | |
20 | cnfldneg | |
|
21 | 19 20 | syl | |
22 | 18 21 | eqtr3d | |
23 | zringring | |
|
24 | 1 | adantr | |
25 | simpr | |
|
26 | 10 16 | lidlnegcl | |
27 | 23 24 25 26 | mp3an2i | |
28 | 22 27 | eqeltrrd | |
29 | 28 | adantr | |
30 | eleq1 | |
|
31 | 29 30 | syl5ibrcom | |
32 | 13 | zred | |
33 | 32 | absord | |
34 | 33 | adantr | |
35 | 5 31 34 | mpjaod | |
36 | nnabscl | |
|
37 | 13 36 | sylan | |
38 | 35 37 | elind | |
39 | 38 | ne0d | |
40 | zring0 | |
|
41 | 10 40 | lidlnz | |
42 | 23 1 2 41 | mp3an2i | |
43 | 39 42 | r19.29a | |