| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zringlpirlem.i |
|
| 2 |
|
zringlpirlem.n0 |
|
| 3 |
|
simplr |
|
| 4 |
|
eleq1 |
|
| 5 |
3 4
|
syl5ibrcom |
|
| 6 |
|
zsubrg |
|
| 7 |
|
subrgsubg |
|
| 8 |
6 7
|
ax-mp |
|
| 9 |
|
zringbas |
|
| 10 |
|
eqid |
|
| 11 |
9 10
|
lidlss |
|
| 12 |
1 11
|
syl |
|
| 13 |
12
|
sselda |
|
| 14 |
|
df-zring |
|
| 15 |
|
eqid |
|
| 16 |
|
eqid |
|
| 17 |
14 15 16
|
subginv |
|
| 18 |
8 13 17
|
sylancr |
|
| 19 |
13
|
zcnd |
|
| 20 |
|
cnfldneg |
|
| 21 |
19 20
|
syl |
|
| 22 |
18 21
|
eqtr3d |
|
| 23 |
|
zringring |
|
| 24 |
1
|
adantr |
|
| 25 |
|
simpr |
|
| 26 |
10 16
|
lidlnegcl |
|
| 27 |
23 24 25 26
|
mp3an2i |
|
| 28 |
22 27
|
eqeltrrd |
|
| 29 |
28
|
adantr |
|
| 30 |
|
eleq1 |
|
| 31 |
29 30
|
syl5ibrcom |
|
| 32 |
13
|
zred |
|
| 33 |
32
|
absord |
|
| 34 |
33
|
adantr |
|
| 35 |
5 31 34
|
mpjaod |
|
| 36 |
|
nnabscl |
|
| 37 |
13 36
|
sylan |
|
| 38 |
35 37
|
elind |
|
| 39 |
38
|
ne0d |
|
| 40 |
|
zring0 |
|
| 41 |
10 40
|
lidlnz |
|
| 42 |
23 1 2 41
|
mp3an2i |
|
| 43 |
39 42
|
r19.29a |
|