Metamath Proof Explorer


Theorem zringlpirlem1

Description: Lemma for zringlpir . A nonzero ideal of integers contains some positive integers. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by AV, 9-Jun-2019)

Ref Expression
Hypotheses zringlpirlem.i φ I LIdeal ring
zringlpirlem.n0 φ I 0
Assertion zringlpirlem1 φ I

Proof

Step Hyp Ref Expression
1 zringlpirlem.i φ I LIdeal ring
2 zringlpirlem.n0 φ I 0
3 simplr φ a I a 0 a I
4 eleq1 a = a a I a I
5 3 4 syl5ibrcom φ a I a 0 a = a a I
6 zsubrg SubRing fld
7 subrgsubg SubRing fld SubGrp fld
8 6 7 ax-mp SubGrp fld
9 zringbas = Base ring
10 eqid LIdeal ring = LIdeal ring
11 9 10 lidlss I LIdeal ring I
12 1 11 syl φ I
13 12 sselda φ a I a
14 df-zring ring = fld 𝑠
15 eqid inv g fld = inv g fld
16 eqid inv g ring = inv g ring
17 14 15 16 subginv SubGrp fld a inv g fld a = inv g ring a
18 8 13 17 sylancr φ a I inv g fld a = inv g ring a
19 13 zcnd φ a I a
20 cnfldneg a inv g fld a = a
21 19 20 syl φ a I inv g fld a = a
22 18 21 eqtr3d φ a I inv g ring a = a
23 zringring ring Ring
24 1 adantr φ a I I LIdeal ring
25 simpr φ a I a I
26 10 16 lidlnegcl ring Ring I LIdeal ring a I inv g ring a I
27 23 24 25 26 mp3an2i φ a I inv g ring a I
28 22 27 eqeltrrd φ a I a I
29 28 adantr φ a I a 0 a I
30 eleq1 a = a a I a I
31 29 30 syl5ibrcom φ a I a 0 a = a a I
32 13 zred φ a I a
33 32 absord φ a I a = a a = a
34 33 adantr φ a I a 0 a = a a = a
35 5 31 34 mpjaod φ a I a 0 a I
36 nnabscl a a 0 a
37 13 36 sylan φ a I a 0 a
38 35 37 elind φ a I a 0 a I
39 38 ne0d φ a I a 0 I
40 zring0 0 = 0 ring
41 10 40 lidlnz ring Ring I LIdeal ring I 0 a I a 0
42 23 1 2 41 mp3an2i φ a I a 0
43 39 42 r19.29a φ I