Metamath Proof Explorer


Theorem zringlpirlem1

Description: Lemma for zringlpir . A nonzero ideal of integers contains some positive integers. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by AV, 9-Jun-2019)

Ref Expression
Hypotheses zringlpirlem.i φILIdealring
zringlpirlem.n0 φI0
Assertion zringlpirlem1 φI

Proof

Step Hyp Ref Expression
1 zringlpirlem.i φILIdealring
2 zringlpirlem.n0 φI0
3 simplr φaIa0aI
4 eleq1 a=aaIaI
5 3 4 syl5ibrcom φaIa0a=aaI
6 zsubrg SubRingfld
7 subrgsubg SubRingfldSubGrpfld
8 6 7 ax-mp SubGrpfld
9 zringbas =Basering
10 eqid LIdealring=LIdealring
11 9 10 lidlss ILIdealringI
12 1 11 syl φI
13 12 sselda φaIa
14 df-zring ring=fld𝑠
15 eqid invgfld=invgfld
16 eqid invgring=invgring
17 14 15 16 subginv SubGrpfldainvgflda=invgringa
18 8 13 17 sylancr φaIinvgflda=invgringa
19 13 zcnd φaIa
20 cnfldneg ainvgflda=a
21 19 20 syl φaIinvgflda=a
22 18 21 eqtr3d φaIinvgringa=a
23 zringring ringRing
24 1 adantr φaIILIdealring
25 simpr φaIaI
26 10 16 lidlnegcl ringRingILIdealringaIinvgringaI
27 23 24 25 26 mp3an2i φaIinvgringaI
28 22 27 eqeltrrd φaIaI
29 28 adantr φaIa0aI
30 eleq1 a=aaIaI
31 29 30 syl5ibrcom φaIa0a=aaI
32 13 zred φaIa
33 32 absord φaIa=aa=a
34 33 adantr φaIa0a=aa=a
35 5 31 34 mpjaod φaIa0aI
36 nnabscl aa0a
37 13 36 sylan φaIa0a
38 35 37 elind φaIa0aI
39 38 ne0d φaIa0I
40 zring0 0=0ring
41 10 40 lidlnz ringRingILIdealringI0aIa0
42 23 1 2 41 mp3an2i φaIa0
43 39 42 r19.29a φI