Metamath Proof Explorer


Theorem zringlpirlem2

Description: Lemma for zringlpir . A nonzero ideal of integers contains the least positive element. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by AV, 9-Jun-2019) (Revised by AV, 27-Sep-2020)

Ref Expression
Hypotheses zringlpirlem.i φ I LIdeal ring
zringlpirlem.n0 φ I 0
zringlpirlem.g G = sup I <
Assertion zringlpirlem2 φ G I

Proof

Step Hyp Ref Expression
1 zringlpirlem.i φ I LIdeal ring
2 zringlpirlem.n0 φ I 0
3 zringlpirlem.g G = sup I <
4 inss2 I
5 nnuz = 1
6 4 5 sseqtri I 1
7 1 2 zringlpirlem1 φ I
8 infssuzcl I 1 I sup I < I
9 6 7 8 sylancr φ sup I < I
10 9 elin1d φ sup I < I
11 3 10 eqeltrid φ G I