Metamath Proof Explorer


Theorem zringmulg

Description: The multiplication (group power) operation of the group of integers. (Contributed by Thierry Arnoux, 31-Oct-2017) (Revised by AV, 9-Jun-2019)

Ref Expression
Assertion zringmulg A B A ring B = A B

Proof

Step Hyp Ref Expression
1 zcn x x
2 zaddcl x y x + y
3 znegcl x x
4 1z 1
5 1 2 3 4 cnsubglem SubGrp fld
6 eqid fld = fld
7 df-zring ring = fld 𝑠
8 eqid ring = ring
9 6 7 8 subgmulg SubGrp fld A B A fld B = A ring B
10 5 9 mp3an1 A B A fld B = A ring B
11 simpr A B B
12 11 zcnd A B B
13 cnfldmulg A B A fld B = A B
14 12 13 syldan A B A fld B = A B
15 10 14 eqtr3d A B A ring B = A B