Metamath Proof Explorer


Theorem zringndrg

Description: The integers are not a division ring, and therefore not a field. (Contributed by AV, 22-Oct-2021)

Ref Expression
Assertion zringndrg ring DivRing

Proof

Step Hyp Ref Expression
1 1ne2 1 2
2 1 nesymi ¬ 2 = 1
3 2re 2
4 0le2 0 2
5 absid 2 0 2 2 = 2
6 3 4 5 mp2an 2 = 2
7 6 eqeq1i 2 = 1 2 = 1
8 2 7 mtbir ¬ 2 = 1
9 8 intnan ¬ 2 2 = 1
10 zringunit 2 Unit ring 2 2 = 1
11 9 10 mtbir ¬ 2 Unit ring
12 zringbas = Base ring
13 eqid Unit ring = Unit ring
14 zring0 0 = 0 ring
15 12 13 14 isdrng ring DivRing ring Ring Unit ring = 0
16 2z 2
17 2ne0 2 0
18 eldifsn 2 0 2 2 0
19 16 17 18 mpbir2an 2 0
20 id Unit ring = 0 Unit ring = 0
21 19 20 eleqtrrid Unit ring = 0 2 Unit ring
22 15 21 simplbiim ring DivRing 2 Unit ring
23 11 22 mto ¬ ring DivRing
24 23 nelir ring DivRing