Database
BASIC TOPOLOGY
Metric spaces
Topology on the reals
zringnrg
Next ⟩
remetdval
Metamath Proof Explorer
Ascii
Unicode
Theorem
zringnrg
Description:
The ring of integers is a normed ring.
(Contributed by
AV
, 13-Jun-2019)
Ref
Expression
Assertion
zringnrg
⊢
ℤ
ring
∈
NrmRing
Proof
Step
Hyp
Ref
Expression
1
cnnrg
⊢
ℂ
fld
∈
NrmRing
2
zsubrg
⊢
ℤ
∈
SubRing
⁡
ℂ
fld
3
df-zring
⊢
ℤ
ring
=
ℂ
fld
↾
𝑠
ℤ
4
3
subrgnrg
⊢
ℂ
fld
∈
NrmRing
∧
ℤ
∈
SubRing
⁡
ℂ
fld
→
ℤ
ring
∈
NrmRing
5
1
2
4
mp2an
⊢
ℤ
ring
∈
NrmRing