Metamath Proof Explorer


Theorem zringpid

Description: The ring of integers is a principal ideal domain. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Assertion zringpid ring PID

Proof

Step Hyp Ref Expression
1 zringidom ring IDomn
2 zringlpir ring LPIR
3 1 2 elini ring IDomn LPIR
4 df-pid PID = IDomn LPIR
5 3 4 eleqtrri ring PID