Database
BASIC ALGEBRAIC STRUCTURES
The complex numbers as an algebraic extensible structure
Ring of integers
zringsubgval
Next ⟩
zringmpg
Metamath Proof Explorer
Ascii
Unicode
Theorem
zringsubgval
Description:
Subtraction in the ring of integers.
(Contributed by
AV
, 3-Aug-2019)
Ref
Expression
Hypothesis
zringsubgval.m
⊢
-
˙
=
-
ℤ
ring
Assertion
zringsubgval
⊢
X
∈
ℤ
∧
Y
∈
ℤ
→
X
−
Y
=
X
-
˙
Y
Proof
Step
Hyp
Ref
Expression
1
zringsubgval.m
⊢
-
˙
=
-
ℤ
ring
2
zsubrg
⊢
ℤ
∈
SubRing
⁡
ℂ
fld
3
subrgsubg
⊢
ℤ
∈
SubRing
⁡
ℂ
fld
→
ℤ
∈
SubGrp
⁡
ℂ
fld
4
2
3
ax-mp
⊢
ℤ
∈
SubGrp
⁡
ℂ
fld
5
cnfldsub
⊢
−
=
-
ℂ
fld
6
df-zring
⊢
ℤ
ring
=
ℂ
fld
↾
𝑠
ℤ
7
5
6
1
subgsub
⊢
ℤ
∈
SubGrp
⁡
ℂ
fld
∧
X
∈
ℤ
∧
Y
∈
ℤ
→
X
−
Y
=
X
-
˙
Y
8
4
7
mp3an1
⊢
X
∈
ℤ
∧
Y
∈
ℤ
→
X
−
Y
=
X
-
˙
Y