Metamath Proof Explorer


Theorem zringsubgval

Description: Subtraction in the ring of integers. (Contributed by AV, 3-Aug-2019)

Ref Expression
Hypothesis zringsubgval.m - ˙ = - ring
Assertion zringsubgval X Y X Y = X - ˙ Y

Proof

Step Hyp Ref Expression
1 zringsubgval.m - ˙ = - ring
2 zsubrg SubRing fld
3 subrgsubg SubRing fld SubGrp fld
4 2 3 ax-mp SubGrp fld
5 cnfldsub = - fld
6 df-zring ring = fld 𝑠
7 5 6 1 subgsub SubGrp fld X Y X Y = X - ˙ Y
8 4 7 mp3an1 X Y X Y = X - ˙ Y