Step |
Hyp |
Ref |
Expression |
1 |
|
zringbas |
|
2 |
|
eqid |
|
3 |
1 2
|
unitcl |
|
4 |
|
zsubrg |
|
5 |
|
zgz |
|
6 |
5
|
ssriv |
|
7 |
|
gzsubrg |
|
8 |
|
eqid |
|
9 |
8
|
subsubrg |
|
10 |
7 9
|
ax-mp |
|
11 |
4 6 10
|
mpbir2an |
|
12 |
|
df-zring |
|
13 |
|
ressabs |
|
14 |
7 6 13
|
mp2an |
|
15 |
12 14
|
eqtr4i |
|
16 |
|
eqid |
|
17 |
15 16 2
|
subrguss |
|
18 |
11 17
|
ax-mp |
|
19 |
18
|
sseli |
|
20 |
8
|
gzrngunit |
|
21 |
20
|
simprbi |
|
22 |
19 21
|
syl |
|
23 |
3 22
|
jca |
|
24 |
|
zcn |
|
25 |
24
|
adantr |
|
26 |
|
simpr |
|
27 |
|
ax-1ne0 |
|
28 |
27
|
a1i |
|
29 |
26 28
|
eqnetrd |
|
30 |
|
fveq2 |
|
31 |
|
abs0 |
|
32 |
30 31
|
eqtrdi |
|
33 |
32
|
necon3i |
|
34 |
29 33
|
syl |
|
35 |
|
eldifsn |
|
36 |
25 34 35
|
sylanbrc |
|
37 |
|
simpl |
|
38 |
|
cnfldinv |
|
39 |
25 34 38
|
syl2anc |
|
40 |
|
zre |
|
41 |
40
|
adantr |
|
42 |
|
absresq |
|
43 |
41 42
|
syl |
|
44 |
26
|
oveq1d |
|
45 |
|
sq1 |
|
46 |
44 45
|
eqtrdi |
|
47 |
25
|
sqvald |
|
48 |
43 46 47
|
3eqtr3rd |
|
49 |
|
1cnd |
|
50 |
49 25 25 34
|
divmuld |
|
51 |
48 50
|
mpbird |
|
52 |
39 51
|
eqtrd |
|
53 |
52 37
|
eqeltrd |
|
54 |
|
cnfldbas |
|
55 |
|
cnfld0 |
|
56 |
|
cndrng |
|
57 |
54 55 56
|
drngui |
|
58 |
|
eqid |
|
59 |
12 57 2 58
|
subrgunit |
|
60 |
4 59
|
ax-mp |
|
61 |
36 37 53 60
|
syl3anbrc |
|
62 |
23 61
|
impbii |
|