Metamath Proof Explorer


Theorem zsssubrg

Description: The integers are a subset of any subring of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion zsssubrg R SubRing fld R

Proof

Step Hyp Ref Expression
1 simpr R SubRing fld x x
2 ax-1cn 1
3 cnfldmulg x 1 x fld 1 = x 1
4 1 2 3 sylancl R SubRing fld x x fld 1 = x 1
5 zcn x x
6 5 adantl R SubRing fld x x
7 6 mulid1d R SubRing fld x x 1 = x
8 4 7 eqtrd R SubRing fld x x fld 1 = x
9 subrgsubg R SubRing fld R SubGrp fld
10 9 adantr R SubRing fld x R SubGrp fld
11 cnfld1 1 = 1 fld
12 11 subrg1cl R SubRing fld 1 R
13 12 adantr R SubRing fld x 1 R
14 eqid fld = fld
15 14 subgmulgcl R SubGrp fld x 1 R x fld 1 R
16 10 1 13 15 syl3anc R SubRing fld x x fld 1 R
17 8 16 eqeltrrd R SubRing fld x x R
18 17 ex R SubRing fld x x R
19 18 ssrdv R SubRing fld R