Database
REAL AND COMPLEX NUMBERS
Integer sets
Integers (as a subset of complex numbers)
zsubcl
Next ⟩
peano2zm
Metamath Proof Explorer
Ascii
Unicode
Theorem
zsubcl
Description:
Closure of subtraction of integers.
(Contributed by
NM
, 11-May-2004)
Ref
Expression
Assertion
zsubcl
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
−
N
∈
ℤ
Proof
Step
Hyp
Ref
Expression
1
zcn
⊢
M
∈
ℤ
→
M
∈
ℂ
2
zcn
⊢
N
∈
ℤ
→
N
∈
ℂ
3
negsub
⊢
M
∈
ℂ
∧
N
∈
ℂ
→
M
+
-
N
=
M
−
N
4
1
2
3
syl2an
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
+
-
N
=
M
−
N
5
znegcl
⊢
N
∈
ℤ
→
−
N
∈
ℤ
6
zaddcl
⊢
M
∈
ℤ
∧
−
N
∈
ℤ
→
M
+
-
N
∈
ℤ
7
5
6
sylan2
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
+
-
N
∈
ℤ
8
4
7
eqeltrrd
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
−
N
∈
ℤ