| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zsum.1 |
|
| 2 |
|
zsum.2 |
|
| 3 |
|
zsum.3 |
|
| 4 |
|
zsum.4 |
|
| 5 |
|
zsum.5 |
|
| 6 |
|
eleq1w |
|
| 7 |
|
csbeq1 |
|
| 8 |
6 7
|
ifbieq1d |
|
| 9 |
8
|
cbvmptv |
|
| 10 |
|
simpll |
|
| 11 |
5
|
ralrimiva |
|
| 12 |
|
nfcsb1v |
|
| 13 |
12
|
nfel1 |
|
| 14 |
|
csbeq1a |
|
| 15 |
14
|
eleq1d |
|
| 16 |
13 15
|
rspc |
|
| 17 |
11 16
|
syl5 |
|
| 18 |
10 17
|
mpan9 |
|
| 19 |
|
simplr |
|
| 20 |
2
|
ad2antrr |
|
| 21 |
|
simpr |
|
| 22 |
3 1
|
sseqtrdi |
|
| 23 |
22
|
ad2antrr |
|
| 24 |
9 18 19 20 21 23
|
sumrb |
|
| 25 |
24
|
biimpd |
|
| 26 |
25
|
expimpd |
|
| 27 |
26
|
rexlimdva |
|
| 28 |
3
|
ad2antrr |
|
| 29 |
|
uzssz |
|
| 30 |
1 29
|
eqsstri |
|
| 31 |
|
zssre |
|
| 32 |
30 31
|
sstri |
|
| 33 |
|
ltso |
|
| 34 |
|
soss |
|
| 35 |
32 33 34
|
mp2 |
|
| 36 |
|
soss |
|
| 37 |
28 35 36
|
mpisyl |
|
| 38 |
|
fzfi |
|
| 39 |
|
ovex |
|
| 40 |
39
|
f1oen |
|
| 41 |
40
|
adantl |
|
| 42 |
41
|
ensymd |
|
| 43 |
|
enfii |
|
| 44 |
38 42 43
|
sylancr |
|
| 45 |
|
fz1iso |
|
| 46 |
37 44 45
|
syl2anc |
|
| 47 |
|
simpll |
|
| 48 |
47 17
|
mpan9 |
|
| 49 |
|
fveq2 |
|
| 50 |
49
|
csbeq1d |
|
| 51 |
|
csbcow |
|
| 52 |
50 51
|
eqtr4di |
|
| 53 |
52
|
cbvmptv |
|
| 54 |
|
eqid |
|
| 55 |
|
simplr |
|
| 56 |
2
|
ad2antrr |
|
| 57 |
22
|
ad2antrr |
|
| 58 |
|
simprl |
|
| 59 |
|
simprr |
|
| 60 |
9 48 53 54 55 56 57 58 59
|
summolem2a |
|
| 61 |
60
|
expr |
|
| 62 |
61
|
exlimdv |
|
| 63 |
46 62
|
mpd |
|
| 64 |
|
breq2 |
|
| 65 |
63 64
|
syl5ibrcom |
|
| 66 |
65
|
expimpd |
|
| 67 |
66
|
exlimdv |
|
| 68 |
67
|
rexlimdva |
|
| 69 |
27 68
|
jaod |
|
| 70 |
2
|
adantr |
|
| 71 |
22
|
adantr |
|
| 72 |
|
simpr |
|
| 73 |
|
fveq2 |
|
| 74 |
73
|
sseq2d |
|
| 75 |
|
seqeq1 |
|
| 76 |
75
|
breq1d |
|
| 77 |
74 76
|
anbi12d |
|
| 78 |
77
|
rspcev |
|
| 79 |
70 71 72 78
|
syl12anc |
|
| 80 |
79
|
orcd |
|
| 81 |
80
|
ex |
|
| 82 |
69 81
|
impbid |
|
| 83 |
|
simpr |
|
| 84 |
29 83
|
sselid |
|
| 85 |
83 1
|
eleqtrrdi |
|
| 86 |
4
|
ralrimiva |
|
| 87 |
86
|
adantr |
|
| 88 |
|
nfcsb1v |
|
| 89 |
88
|
nfeq2 |
|
| 90 |
|
fveq2 |
|
| 91 |
|
csbeq1a |
|
| 92 |
90 91
|
eqeq12d |
|
| 93 |
89 92
|
rspc |
|
| 94 |
85 87 93
|
sylc |
|
| 95 |
|
fvex |
|
| 96 |
94 95
|
eqeltrrdi |
|
| 97 |
|
nfcv |
|
| 98 |
|
nfv |
|
| 99 |
|
nfcsb1v |
|
| 100 |
|
nfcv |
|
| 101 |
98 99 100
|
nfif |
|
| 102 |
|
eleq1w |
|
| 103 |
|
csbeq1a |
|
| 104 |
102 103
|
ifbieq1d |
|
| 105 |
97 101 104
|
cbvmpt |
|
| 106 |
105
|
eqcomi |
|
| 107 |
106
|
fvmpts |
|
| 108 |
84 96 107
|
syl2anc |
|
| 109 |
108 94
|
eqtr4d |
|
| 110 |
2 109
|
seqfeq |
|
| 111 |
110
|
breq1d |
|
| 112 |
82 111
|
bitrd |
|
| 113 |
112
|
iotabidv |
|
| 114 |
|
df-sum |
|
| 115 |
|
df-fv |
|
| 116 |
113 114 115
|
3eqtr4g |
|