Step |
Hyp |
Ref |
Expression |
1 |
|
zsum.1 |
|
2 |
|
zsum.2 |
|
3 |
|
zsum.3 |
|
4 |
|
zsum.4 |
|
5 |
|
zsum.5 |
|
6 |
|
eleq1w |
|
7 |
|
csbeq1 |
|
8 |
6 7
|
ifbieq1d |
|
9 |
8
|
cbvmptv |
|
10 |
|
simpll |
|
11 |
5
|
ralrimiva |
|
12 |
|
nfcsb1v |
|
13 |
12
|
nfel1 |
|
14 |
|
csbeq1a |
|
15 |
14
|
eleq1d |
|
16 |
13 15
|
rspc |
|
17 |
11 16
|
syl5 |
|
18 |
10 17
|
mpan9 |
|
19 |
|
simplr |
|
20 |
2
|
ad2antrr |
|
21 |
|
simpr |
|
22 |
3 1
|
sseqtrdi |
|
23 |
22
|
ad2antrr |
|
24 |
9 18 19 20 21 23
|
sumrb |
|
25 |
24
|
biimpd |
|
26 |
25
|
expimpd |
|
27 |
26
|
rexlimdva |
|
28 |
3
|
ad2antrr |
|
29 |
|
uzssz |
|
30 |
1 29
|
eqsstri |
|
31 |
|
zssre |
|
32 |
30 31
|
sstri |
|
33 |
|
ltso |
|
34 |
|
soss |
|
35 |
32 33 34
|
mp2 |
|
36 |
|
soss |
|
37 |
28 35 36
|
mpisyl |
|
38 |
|
fzfi |
|
39 |
|
ovex |
|
40 |
39
|
f1oen |
|
41 |
40
|
adantl |
|
42 |
41
|
ensymd |
|
43 |
|
enfii |
|
44 |
38 42 43
|
sylancr |
|
45 |
|
fz1iso |
|
46 |
37 44 45
|
syl2anc |
|
47 |
|
simpll |
|
48 |
47 17
|
mpan9 |
|
49 |
|
fveq2 |
|
50 |
49
|
csbeq1d |
|
51 |
|
csbcow |
|
52 |
50 51
|
eqtr4di |
|
53 |
52
|
cbvmptv |
|
54 |
|
eqid |
|
55 |
|
simplr |
|
56 |
2
|
ad2antrr |
|
57 |
22
|
ad2antrr |
|
58 |
|
simprl |
|
59 |
|
simprr |
|
60 |
9 48 53 54 55 56 57 58 59
|
summolem2a |
|
61 |
60
|
expr |
|
62 |
61
|
exlimdv |
|
63 |
46 62
|
mpd |
|
64 |
|
breq2 |
|
65 |
63 64
|
syl5ibrcom |
|
66 |
65
|
expimpd |
|
67 |
66
|
exlimdv |
|
68 |
67
|
rexlimdva |
|
69 |
27 68
|
jaod |
|
70 |
2
|
adantr |
|
71 |
22
|
adantr |
|
72 |
|
simpr |
|
73 |
|
fveq2 |
|
74 |
73
|
sseq2d |
|
75 |
|
seqeq1 |
|
76 |
75
|
breq1d |
|
77 |
74 76
|
anbi12d |
|
78 |
77
|
rspcev |
|
79 |
70 71 72 78
|
syl12anc |
|
80 |
79
|
orcd |
|
81 |
80
|
ex |
|
82 |
69 81
|
impbid |
|
83 |
|
simpr |
|
84 |
29 83
|
sselid |
|
85 |
83 1
|
eleqtrrdi |
|
86 |
4
|
ralrimiva |
|
87 |
86
|
adantr |
|
88 |
|
nfcsb1v |
|
89 |
88
|
nfeq2 |
|
90 |
|
fveq2 |
|
91 |
|
csbeq1a |
|
92 |
90 91
|
eqeq12d |
|
93 |
89 92
|
rspc |
|
94 |
85 87 93
|
sylc |
|
95 |
|
fvex |
|
96 |
94 95
|
eqeltrrdi |
|
97 |
|
nfcv |
|
98 |
|
nfv |
|
99 |
|
nfcsb1v |
|
100 |
|
nfcv |
|
101 |
98 99 100
|
nfif |
|
102 |
|
eleq1w |
|
103 |
|
csbeq1a |
|
104 |
102 103
|
ifbieq1d |
|
105 |
97 101 104
|
cbvmpt |
|
106 |
105
|
eqcomi |
|
107 |
106
|
fvmpts |
|
108 |
84 96 107
|
syl2anc |
|
109 |
108 94
|
eqtr4d |
|
110 |
2 109
|
seqfeq |
|
111 |
110
|
breq1d |
|
112 |
82 111
|
bitrd |
|
113 |
112
|
iotabidv |
|
114 |
|
df-sum |
|
115 |
|
df-fv |
|
116 |
113 114 115
|
3eqtr4g |
|