Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
|
2 |
1
|
cbvralvw |
|
3 |
|
breq2 |
|
4 |
3
|
ralbidv |
|
5 |
2 4
|
syl5bb |
|
6 |
5
|
cbvrexvw |
|
7 |
|
simp1rl |
|
8 |
7
|
znegcld |
|
9 |
|
simp2 |
|
10 |
9
|
zred |
|
11 |
7
|
zred |
|
12 |
|
breq1 |
|
13 |
|
simp1rr |
|
14 |
|
simp3 |
|
15 |
12 13 14
|
rspcdva |
|
16 |
10 11 15
|
lenegcon1d |
|
17 |
|
eluz2 |
|
18 |
8 9 16 17
|
syl3anbrc |
|
19 |
18
|
rabssdv |
|
20 |
|
n0 |
|
21 |
|
ssel2 |
|
22 |
21
|
znegcld |
|
23 |
21
|
zcnd |
|
24 |
23
|
negnegd |
|
25 |
|
simpr |
|
26 |
24 25
|
eqeltrd |
|
27 |
|
negeq |
|
28 |
27
|
eleq1d |
|
29 |
28
|
rspcev |
|
30 |
22 26 29
|
syl2anc |
|
31 |
30
|
ex |
|
32 |
31
|
exlimdv |
|
33 |
32
|
imp |
|
34 |
20 33
|
sylan2b |
|
35 |
34
|
adantr |
|
36 |
|
rabn0 |
|
37 |
35 36
|
sylibr |
|
38 |
|
infssuzcl |
|
39 |
19 37 38
|
syl2anc |
|
40 |
|
negeq |
|
41 |
40
|
eleq1d |
|
42 |
|
negeq |
|
43 |
42
|
eleq1d |
|
44 |
43
|
cbvrabv |
|
45 |
41 44
|
elrab2 |
|
46 |
45
|
simprbi |
|
47 |
39 46
|
syl |
|
48 |
|
simpll |
|
49 |
48
|
sselda |
|
50 |
49
|
zred |
|
51 |
|
ssrab2 |
|
52 |
39
|
adantr |
|
53 |
51 52
|
sselid |
|
54 |
53
|
znegcld |
|
55 |
54
|
zred |
|
56 |
53
|
zred |
|
57 |
19
|
adantr |
|
58 |
|
negeq |
|
59 |
58
|
eleq1d |
|
60 |
49
|
znegcld |
|
61 |
49
|
zcnd |
|
62 |
61
|
negnegd |
|
63 |
|
simpr |
|
64 |
62 63
|
eqeltrd |
|
65 |
59 60 64
|
elrabd |
|
66 |
|
infssuzle |
|
67 |
57 65 66
|
syl2anc |
|
68 |
56 50 67
|
lenegcon2d |
|
69 |
50 55 68
|
lensymd |
|
70 |
69
|
ralrimiva |
|
71 |
|
breq2 |
|
72 |
71
|
rspcev |
|
73 |
72
|
ex |
|
74 |
47 73
|
syl |
|
75 |
74
|
ralrimivw |
|
76 |
|
breq1 |
|
77 |
76
|
notbid |
|
78 |
77
|
ralbidv |
|
79 |
|
breq2 |
|
80 |
79
|
imbi1d |
|
81 |
80
|
ralbidv |
|
82 |
78 81
|
anbi12d |
|
83 |
82
|
rspcev |
|
84 |
47 70 75 83
|
syl12anc |
|
85 |
84
|
rexlimdvaa |
|
86 |
6 85
|
syl5bi |
|
87 |
86
|
3impia |
|