Metamath Proof Explorer


Theorem zzngim

Description: The ZZ ring homomorphism is an isomorphism for N = 0 . (We only show group isomorphism here, but ring isomorphism follows, since it is a bijective ring homomorphism.) (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by AV, 13-Jun-2019)

Ref Expression
Hypotheses zzngim.y Y = / 0
zzngim.2 L = ℤRHom Y
Assertion zzngim L ring GrpIso Y

Proof

Step Hyp Ref Expression
1 zzngim.y Y = / 0
2 zzngim.2 L = ℤRHom Y
3 0nn0 0 0
4 1 zncrng 0 0 Y CRing
5 crngring Y CRing Y Ring
6 3 4 5 mp2b Y Ring
7 2 zrhrhm Y Ring L ring RingHom Y
8 rhmghm L ring RingHom Y L ring GrpHom Y
9 6 7 8 mp2b L ring GrpHom Y
10 eqid Base Y = Base Y
11 1 10 2 znzrhfo 0 0 L : onto Base Y
12 3 11 ax-mp L : onto Base Y
13 fofn L : onto Base Y L Fn
14 fnresdm L Fn L = L
15 12 13 14 mp2b L = L
16 2 reseq1i L = ℤRHom Y
17 15 16 eqtr3i L = ℤRHom Y
18 eqid 0 = 0
19 18 iftruei if 0 = 0 0 ..^ 0 =
20 19 eqcomi = if 0 = 0 0 ..^ 0
21 1 10 17 20 znf1o 0 0 L : 1-1 onto Base Y
22 3 21 ax-mp L : 1-1 onto Base Y
23 zringbas = Base ring
24 23 10 isgim L ring GrpIso Y L ring GrpHom Y L : 1-1 onto Base Y
25 9 22 24 mpbir2an L ring GrpIso Y