| Step |
Hyp |
Ref |
Expression |
| 1 |
|
9cn |
⊢ 9 ∈ ℂ |
| 2 |
|
10re |
⊢ ; 1 0 ∈ ℝ |
| 3 |
2
|
recni |
⊢ ; 1 0 ∈ ℂ |
| 4 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
| 5 |
|
expcl |
⊢ ( ( ; 1 0 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ; 1 0 ↑ 𝑘 ) ∈ ℂ ) |
| 6 |
3 4 5
|
sylancr |
⊢ ( 𝑘 ∈ ℕ → ( ; 1 0 ↑ 𝑘 ) ∈ ℂ ) |
| 7 |
3
|
a1i |
⊢ ( 𝑘 ∈ ℕ → ; 1 0 ∈ ℂ ) |
| 8 |
|
10pos |
⊢ 0 < ; 1 0 |
| 9 |
2 8
|
gt0ne0ii |
⊢ ; 1 0 ≠ 0 |
| 10 |
9
|
a1i |
⊢ ( 𝑘 ∈ ℕ → ; 1 0 ≠ 0 ) |
| 11 |
|
nnz |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) |
| 12 |
7 10 11
|
expne0d |
⊢ ( 𝑘 ∈ ℕ → ( ; 1 0 ↑ 𝑘 ) ≠ 0 ) |
| 13 |
|
divrec |
⊢ ( ( 9 ∈ ℂ ∧ ( ; 1 0 ↑ 𝑘 ) ∈ ℂ ∧ ( ; 1 0 ↑ 𝑘 ) ≠ 0 ) → ( 9 / ( ; 1 0 ↑ 𝑘 ) ) = ( 9 · ( 1 / ( ; 1 0 ↑ 𝑘 ) ) ) ) |
| 14 |
1 6 12 13
|
mp3an2i |
⊢ ( 𝑘 ∈ ℕ → ( 9 / ( ; 1 0 ↑ 𝑘 ) ) = ( 9 · ( 1 / ( ; 1 0 ↑ 𝑘 ) ) ) ) |
| 15 |
7 10 11
|
exprecd |
⊢ ( 𝑘 ∈ ℕ → ( ( 1 / ; 1 0 ) ↑ 𝑘 ) = ( 1 / ( ; 1 0 ↑ 𝑘 ) ) ) |
| 16 |
15
|
oveq2d |
⊢ ( 𝑘 ∈ ℕ → ( 9 · ( ( 1 / ; 1 0 ) ↑ 𝑘 ) ) = ( 9 · ( 1 / ( ; 1 0 ↑ 𝑘 ) ) ) ) |
| 17 |
14 16
|
eqtr4d |
⊢ ( 𝑘 ∈ ℕ → ( 9 / ( ; 1 0 ↑ 𝑘 ) ) = ( 9 · ( ( 1 / ; 1 0 ) ↑ 𝑘 ) ) ) |
| 18 |
17
|
sumeq2i |
⊢ Σ 𝑘 ∈ ℕ ( 9 / ( ; 1 0 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ℕ ( 9 · ( ( 1 / ; 1 0 ) ↑ 𝑘 ) ) |
| 19 |
2 9
|
rereccli |
⊢ ( 1 / ; 1 0 ) ∈ ℝ |
| 20 |
19
|
recni |
⊢ ( 1 / ; 1 0 ) ∈ ℂ |
| 21 |
|
0re |
⊢ 0 ∈ ℝ |
| 22 |
2 8
|
recgt0ii |
⊢ 0 < ( 1 / ; 1 0 ) |
| 23 |
21 19 22
|
ltleii |
⊢ 0 ≤ ( 1 / ; 1 0 ) |
| 24 |
19
|
absidi |
⊢ ( 0 ≤ ( 1 / ; 1 0 ) → ( abs ‘ ( 1 / ; 1 0 ) ) = ( 1 / ; 1 0 ) ) |
| 25 |
23 24
|
ax-mp |
⊢ ( abs ‘ ( 1 / ; 1 0 ) ) = ( 1 / ; 1 0 ) |
| 26 |
|
1lt10 |
⊢ 1 < ; 1 0 |
| 27 |
|
recgt1 |
⊢ ( ( ; 1 0 ∈ ℝ ∧ 0 < ; 1 0 ) → ( 1 < ; 1 0 ↔ ( 1 / ; 1 0 ) < 1 ) ) |
| 28 |
2 8 27
|
mp2an |
⊢ ( 1 < ; 1 0 ↔ ( 1 / ; 1 0 ) < 1 ) |
| 29 |
26 28
|
mpbi |
⊢ ( 1 / ; 1 0 ) < 1 |
| 30 |
25 29
|
eqbrtri |
⊢ ( abs ‘ ( 1 / ; 1 0 ) ) < 1 |
| 31 |
|
geoisum1c |
⊢ ( ( 9 ∈ ℂ ∧ ( 1 / ; 1 0 ) ∈ ℂ ∧ ( abs ‘ ( 1 / ; 1 0 ) ) < 1 ) → Σ 𝑘 ∈ ℕ ( 9 · ( ( 1 / ; 1 0 ) ↑ 𝑘 ) ) = ( ( 9 · ( 1 / ; 1 0 ) ) / ( 1 − ( 1 / ; 1 0 ) ) ) ) |
| 32 |
1 20 30 31
|
mp3an |
⊢ Σ 𝑘 ∈ ℕ ( 9 · ( ( 1 / ; 1 0 ) ↑ 𝑘 ) ) = ( ( 9 · ( 1 / ; 1 0 ) ) / ( 1 − ( 1 / ; 1 0 ) ) ) |
| 33 |
1 3 9
|
divreci |
⊢ ( 9 / ; 1 0 ) = ( 9 · ( 1 / ; 1 0 ) ) |
| 34 |
1 3 9
|
divcan2i |
⊢ ( ; 1 0 · ( 9 / ; 1 0 ) ) = 9 |
| 35 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 36 |
3 35 20
|
subdii |
⊢ ( ; 1 0 · ( 1 − ( 1 / ; 1 0 ) ) ) = ( ( ; 1 0 · 1 ) − ( ; 1 0 · ( 1 / ; 1 0 ) ) ) |
| 37 |
3
|
mulridi |
⊢ ( ; 1 0 · 1 ) = ; 1 0 |
| 38 |
3 9
|
recidi |
⊢ ( ; 1 0 · ( 1 / ; 1 0 ) ) = 1 |
| 39 |
37 38
|
oveq12i |
⊢ ( ( ; 1 0 · 1 ) − ( ; 1 0 · ( 1 / ; 1 0 ) ) ) = ( ; 1 0 − 1 ) |
| 40 |
|
10m1e9 |
⊢ ( ; 1 0 − 1 ) = 9 |
| 41 |
36 39 40
|
3eqtrri |
⊢ 9 = ( ; 1 0 · ( 1 − ( 1 / ; 1 0 ) ) ) |
| 42 |
34 41
|
eqtri |
⊢ ( ; 1 0 · ( 9 / ; 1 0 ) ) = ( ; 1 0 · ( 1 − ( 1 / ; 1 0 ) ) ) |
| 43 |
|
9re |
⊢ 9 ∈ ℝ |
| 44 |
43 2 9
|
redivcli |
⊢ ( 9 / ; 1 0 ) ∈ ℝ |
| 45 |
44
|
recni |
⊢ ( 9 / ; 1 0 ) ∈ ℂ |
| 46 |
35 20
|
subcli |
⊢ ( 1 − ( 1 / ; 1 0 ) ) ∈ ℂ |
| 47 |
45 46 3 9
|
mulcani |
⊢ ( ( ; 1 0 · ( 9 / ; 1 0 ) ) = ( ; 1 0 · ( 1 − ( 1 / ; 1 0 ) ) ) ↔ ( 9 / ; 1 0 ) = ( 1 − ( 1 / ; 1 0 ) ) ) |
| 48 |
42 47
|
mpbi |
⊢ ( 9 / ; 1 0 ) = ( 1 − ( 1 / ; 1 0 ) ) |
| 49 |
33 48
|
oveq12i |
⊢ ( ( 9 / ; 1 0 ) / ( 9 / ; 1 0 ) ) = ( ( 9 · ( 1 / ; 1 0 ) ) / ( 1 − ( 1 / ; 1 0 ) ) ) |
| 50 |
|
9pos |
⊢ 0 < 9 |
| 51 |
43 2 50 8
|
divgt0ii |
⊢ 0 < ( 9 / ; 1 0 ) |
| 52 |
44 51
|
gt0ne0ii |
⊢ ( 9 / ; 1 0 ) ≠ 0 |
| 53 |
45 52
|
dividi |
⊢ ( ( 9 / ; 1 0 ) / ( 9 / ; 1 0 ) ) = 1 |
| 54 |
32 49 53
|
3eqtr2i |
⊢ Σ 𝑘 ∈ ℕ ( 9 · ( ( 1 / ; 1 0 ) ↑ 𝑘 ) ) = 1 |
| 55 |
18 54
|
eqtri |
⊢ Σ 𝑘 ∈ ℕ ( 9 / ( ; 1 0 ↑ 𝑘 ) ) = 1 |