Step |
Hyp |
Ref |
Expression |
1 |
|
9cn |
⊢ 9 ∈ ℂ |
2 |
|
10re |
⊢ ; 1 0 ∈ ℝ |
3 |
2
|
recni |
⊢ ; 1 0 ∈ ℂ |
4 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
5 |
|
expcl |
⊢ ( ( ; 1 0 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ; 1 0 ↑ 𝑘 ) ∈ ℂ ) |
6 |
3 4 5
|
sylancr |
⊢ ( 𝑘 ∈ ℕ → ( ; 1 0 ↑ 𝑘 ) ∈ ℂ ) |
7 |
3
|
a1i |
⊢ ( 𝑘 ∈ ℕ → ; 1 0 ∈ ℂ ) |
8 |
|
10pos |
⊢ 0 < ; 1 0 |
9 |
2 8
|
gt0ne0ii |
⊢ ; 1 0 ≠ 0 |
10 |
9
|
a1i |
⊢ ( 𝑘 ∈ ℕ → ; 1 0 ≠ 0 ) |
11 |
|
nnz |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) |
12 |
7 10 11
|
expne0d |
⊢ ( 𝑘 ∈ ℕ → ( ; 1 0 ↑ 𝑘 ) ≠ 0 ) |
13 |
|
divrec |
⊢ ( ( 9 ∈ ℂ ∧ ( ; 1 0 ↑ 𝑘 ) ∈ ℂ ∧ ( ; 1 0 ↑ 𝑘 ) ≠ 0 ) → ( 9 / ( ; 1 0 ↑ 𝑘 ) ) = ( 9 · ( 1 / ( ; 1 0 ↑ 𝑘 ) ) ) ) |
14 |
1 6 12 13
|
mp3an2i |
⊢ ( 𝑘 ∈ ℕ → ( 9 / ( ; 1 0 ↑ 𝑘 ) ) = ( 9 · ( 1 / ( ; 1 0 ↑ 𝑘 ) ) ) ) |
15 |
7 10 11
|
exprecd |
⊢ ( 𝑘 ∈ ℕ → ( ( 1 / ; 1 0 ) ↑ 𝑘 ) = ( 1 / ( ; 1 0 ↑ 𝑘 ) ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝑘 ∈ ℕ → ( 9 · ( ( 1 / ; 1 0 ) ↑ 𝑘 ) ) = ( 9 · ( 1 / ( ; 1 0 ↑ 𝑘 ) ) ) ) |
17 |
14 16
|
eqtr4d |
⊢ ( 𝑘 ∈ ℕ → ( 9 / ( ; 1 0 ↑ 𝑘 ) ) = ( 9 · ( ( 1 / ; 1 0 ) ↑ 𝑘 ) ) ) |
18 |
17
|
sumeq2i |
⊢ Σ 𝑘 ∈ ℕ ( 9 / ( ; 1 0 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ℕ ( 9 · ( ( 1 / ; 1 0 ) ↑ 𝑘 ) ) |
19 |
2 9
|
rereccli |
⊢ ( 1 / ; 1 0 ) ∈ ℝ |
20 |
19
|
recni |
⊢ ( 1 / ; 1 0 ) ∈ ℂ |
21 |
|
0re |
⊢ 0 ∈ ℝ |
22 |
2 8
|
recgt0ii |
⊢ 0 < ( 1 / ; 1 0 ) |
23 |
21 19 22
|
ltleii |
⊢ 0 ≤ ( 1 / ; 1 0 ) |
24 |
19
|
absidi |
⊢ ( 0 ≤ ( 1 / ; 1 0 ) → ( abs ‘ ( 1 / ; 1 0 ) ) = ( 1 / ; 1 0 ) ) |
25 |
23 24
|
ax-mp |
⊢ ( abs ‘ ( 1 / ; 1 0 ) ) = ( 1 / ; 1 0 ) |
26 |
|
1lt10 |
⊢ 1 < ; 1 0 |
27 |
|
recgt1 |
⊢ ( ( ; 1 0 ∈ ℝ ∧ 0 < ; 1 0 ) → ( 1 < ; 1 0 ↔ ( 1 / ; 1 0 ) < 1 ) ) |
28 |
2 8 27
|
mp2an |
⊢ ( 1 < ; 1 0 ↔ ( 1 / ; 1 0 ) < 1 ) |
29 |
26 28
|
mpbi |
⊢ ( 1 / ; 1 0 ) < 1 |
30 |
25 29
|
eqbrtri |
⊢ ( abs ‘ ( 1 / ; 1 0 ) ) < 1 |
31 |
|
geoisum1c |
⊢ ( ( 9 ∈ ℂ ∧ ( 1 / ; 1 0 ) ∈ ℂ ∧ ( abs ‘ ( 1 / ; 1 0 ) ) < 1 ) → Σ 𝑘 ∈ ℕ ( 9 · ( ( 1 / ; 1 0 ) ↑ 𝑘 ) ) = ( ( 9 · ( 1 / ; 1 0 ) ) / ( 1 − ( 1 / ; 1 0 ) ) ) ) |
32 |
1 20 30 31
|
mp3an |
⊢ Σ 𝑘 ∈ ℕ ( 9 · ( ( 1 / ; 1 0 ) ↑ 𝑘 ) ) = ( ( 9 · ( 1 / ; 1 0 ) ) / ( 1 − ( 1 / ; 1 0 ) ) ) |
33 |
1 3 9
|
divreci |
⊢ ( 9 / ; 1 0 ) = ( 9 · ( 1 / ; 1 0 ) ) |
34 |
1 3 9
|
divcan2i |
⊢ ( ; 1 0 · ( 9 / ; 1 0 ) ) = 9 |
35 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
36 |
3 35 20
|
subdii |
⊢ ( ; 1 0 · ( 1 − ( 1 / ; 1 0 ) ) ) = ( ( ; 1 0 · 1 ) − ( ; 1 0 · ( 1 / ; 1 0 ) ) ) |
37 |
3
|
mulid1i |
⊢ ( ; 1 0 · 1 ) = ; 1 0 |
38 |
3 9
|
recidi |
⊢ ( ; 1 0 · ( 1 / ; 1 0 ) ) = 1 |
39 |
37 38
|
oveq12i |
⊢ ( ( ; 1 0 · 1 ) − ( ; 1 0 · ( 1 / ; 1 0 ) ) ) = ( ; 1 0 − 1 ) |
40 |
|
10m1e9 |
⊢ ( ; 1 0 − 1 ) = 9 |
41 |
36 39 40
|
3eqtrri |
⊢ 9 = ( ; 1 0 · ( 1 − ( 1 / ; 1 0 ) ) ) |
42 |
34 41
|
eqtri |
⊢ ( ; 1 0 · ( 9 / ; 1 0 ) ) = ( ; 1 0 · ( 1 − ( 1 / ; 1 0 ) ) ) |
43 |
|
9re |
⊢ 9 ∈ ℝ |
44 |
43 2 9
|
redivcli |
⊢ ( 9 / ; 1 0 ) ∈ ℝ |
45 |
44
|
recni |
⊢ ( 9 / ; 1 0 ) ∈ ℂ |
46 |
35 20
|
subcli |
⊢ ( 1 − ( 1 / ; 1 0 ) ) ∈ ℂ |
47 |
45 46 3 9
|
mulcani |
⊢ ( ( ; 1 0 · ( 9 / ; 1 0 ) ) = ( ; 1 0 · ( 1 − ( 1 / ; 1 0 ) ) ) ↔ ( 9 / ; 1 0 ) = ( 1 − ( 1 / ; 1 0 ) ) ) |
48 |
42 47
|
mpbi |
⊢ ( 9 / ; 1 0 ) = ( 1 − ( 1 / ; 1 0 ) ) |
49 |
33 48
|
oveq12i |
⊢ ( ( 9 / ; 1 0 ) / ( 9 / ; 1 0 ) ) = ( ( 9 · ( 1 / ; 1 0 ) ) / ( 1 − ( 1 / ; 1 0 ) ) ) |
50 |
|
9pos |
⊢ 0 < 9 |
51 |
43 2 50 8
|
divgt0ii |
⊢ 0 < ( 9 / ; 1 0 ) |
52 |
44 51
|
gt0ne0ii |
⊢ ( 9 / ; 1 0 ) ≠ 0 |
53 |
45 52
|
dividi |
⊢ ( ( 9 / ; 1 0 ) / ( 9 / ; 1 0 ) ) = 1 |
54 |
32 49 53
|
3eqtr2i |
⊢ Σ 𝑘 ∈ ℕ ( 9 · ( ( 1 / ; 1 0 ) ↑ 𝑘 ) ) = 1 |
55 |
18 54
|
eqtri |
⊢ Σ 𝑘 ∈ ℕ ( 9 / ( ; 1 0 ↑ 𝑘 ) ) = 1 |