| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0re |
⊢ 0 ∈ ℝ |
| 2 |
|
ax-rnegex |
⊢ ( 0 ∈ ℝ → ∃ 𝑐 ∈ ℝ ( 0 + 𝑐 ) = 0 ) |
| 3 |
|
oveq2 |
⊢ ( 𝑐 = 0 → ( 0 + 𝑐 ) = ( 0 + 0 ) ) |
| 4 |
3
|
eqeq1d |
⊢ ( 𝑐 = 0 → ( ( 0 + 𝑐 ) = 0 ↔ ( 0 + 0 ) = 0 ) ) |
| 5 |
4
|
biimpd |
⊢ ( 𝑐 = 0 → ( ( 0 + 𝑐 ) = 0 → ( 0 + 0 ) = 0 ) ) |
| 6 |
5
|
adantld |
⊢ ( 𝑐 = 0 → ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) → ( 0 + 0 ) = 0 ) ) |
| 7 |
|
ax-rrecex |
⊢ ( ( 𝑐 ∈ ℝ ∧ 𝑐 ≠ 0 ) → ∃ 𝑦 ∈ ℝ ( 𝑐 · 𝑦 ) = 1 ) |
| 8 |
7
|
adantlr |
⊢ ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) → ∃ 𝑦 ∈ ℝ ( 𝑐 · 𝑦 ) = 1 ) |
| 9 |
|
simplll |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → 𝑐 ∈ ℝ ) |
| 10 |
9
|
recnd |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → 𝑐 ∈ ℂ ) |
| 11 |
|
simprl |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → 𝑦 ∈ ℝ ) |
| 12 |
11
|
recnd |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → 𝑦 ∈ ℂ ) |
| 13 |
|
0cn |
⊢ 0 ∈ ℂ |
| 14 |
|
mulass |
⊢ ( ( 𝑐 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 0 ∈ ℂ ) → ( ( 𝑐 · 𝑦 ) · 0 ) = ( 𝑐 · ( 𝑦 · 0 ) ) ) |
| 15 |
13 14
|
mp3an3 |
⊢ ( ( 𝑐 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑐 · 𝑦 ) · 0 ) = ( 𝑐 · ( 𝑦 · 0 ) ) ) |
| 16 |
10 12 15
|
syl2anc |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( 𝑐 · 𝑦 ) · 0 ) = ( 𝑐 · ( 𝑦 · 0 ) ) ) |
| 17 |
|
oveq1 |
⊢ ( ( 𝑐 · 𝑦 ) = 1 → ( ( 𝑐 · 𝑦 ) · 0 ) = ( 1 · 0 ) ) |
| 18 |
13
|
mullidi |
⊢ ( 1 · 0 ) = 0 |
| 19 |
17 18
|
eqtrdi |
⊢ ( ( 𝑐 · 𝑦 ) = 1 → ( ( 𝑐 · 𝑦 ) · 0 ) = 0 ) |
| 20 |
19
|
ad2antll |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( 𝑐 · 𝑦 ) · 0 ) = 0 ) |
| 21 |
16 20
|
eqtr3d |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 𝑐 · ( 𝑦 · 0 ) ) = 0 ) |
| 22 |
21
|
oveq1d |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) = ( 0 + 0 ) ) |
| 23 |
|
simpllr |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 0 + 𝑐 ) = 0 ) |
| 24 |
23
|
oveq1d |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( 0 + 𝑐 ) · ( 𝑦 · 0 ) ) = ( 0 · ( 𝑦 · 0 ) ) ) |
| 25 |
|
remulcl |
⊢ ( ( 𝑦 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝑦 · 0 ) ∈ ℝ ) |
| 26 |
1 25
|
mpan2 |
⊢ ( 𝑦 ∈ ℝ → ( 𝑦 · 0 ) ∈ ℝ ) |
| 27 |
26
|
ad2antrl |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 𝑦 · 0 ) ∈ ℝ ) |
| 28 |
27
|
recnd |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 𝑦 · 0 ) ∈ ℂ ) |
| 29 |
|
adddir |
⊢ ( ( 0 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ ( 𝑦 · 0 ) ∈ ℂ ) → ( ( 0 + 𝑐 ) · ( 𝑦 · 0 ) ) = ( ( 0 · ( 𝑦 · 0 ) ) + ( 𝑐 · ( 𝑦 · 0 ) ) ) ) |
| 30 |
13 10 28 29
|
mp3an2i |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( 0 + 𝑐 ) · ( 𝑦 · 0 ) ) = ( ( 0 · ( 𝑦 · 0 ) ) + ( 𝑐 · ( 𝑦 · 0 ) ) ) ) |
| 31 |
24 30
|
eqtr3d |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 0 · ( 𝑦 · 0 ) ) = ( ( 0 · ( 𝑦 · 0 ) ) + ( 𝑐 · ( 𝑦 · 0 ) ) ) ) |
| 32 |
31
|
oveq1d |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( 0 · ( 𝑦 · 0 ) ) + 0 ) = ( ( ( 0 · ( 𝑦 · 0 ) ) + ( 𝑐 · ( 𝑦 · 0 ) ) ) + 0 ) ) |
| 33 |
|
remulcl |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝑦 · 0 ) ∈ ℝ ) → ( 0 · ( 𝑦 · 0 ) ) ∈ ℝ ) |
| 34 |
1 26 33
|
sylancr |
⊢ ( 𝑦 ∈ ℝ → ( 0 · ( 𝑦 · 0 ) ) ∈ ℝ ) |
| 35 |
34
|
ad2antrl |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 0 · ( 𝑦 · 0 ) ) ∈ ℝ ) |
| 36 |
35
|
recnd |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 0 · ( 𝑦 · 0 ) ) ∈ ℂ ) |
| 37 |
|
remulcl |
⊢ ( ( 𝑐 ∈ ℝ ∧ ( 𝑦 · 0 ) ∈ ℝ ) → ( 𝑐 · ( 𝑦 · 0 ) ) ∈ ℝ ) |
| 38 |
9 27 37
|
syl2anc |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 𝑐 · ( 𝑦 · 0 ) ) ∈ ℝ ) |
| 39 |
38
|
recnd |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 𝑐 · ( 𝑦 · 0 ) ) ∈ ℂ ) |
| 40 |
|
addass |
⊢ ( ( ( 0 · ( 𝑦 · 0 ) ) ∈ ℂ ∧ ( 𝑐 · ( 𝑦 · 0 ) ) ∈ ℂ ∧ 0 ∈ ℂ ) → ( ( ( 0 · ( 𝑦 · 0 ) ) + ( 𝑐 · ( 𝑦 · 0 ) ) ) + 0 ) = ( ( 0 · ( 𝑦 · 0 ) ) + ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ) ) |
| 41 |
13 40
|
mp3an3 |
⊢ ( ( ( 0 · ( 𝑦 · 0 ) ) ∈ ℂ ∧ ( 𝑐 · ( 𝑦 · 0 ) ) ∈ ℂ ) → ( ( ( 0 · ( 𝑦 · 0 ) ) + ( 𝑐 · ( 𝑦 · 0 ) ) ) + 0 ) = ( ( 0 · ( 𝑦 · 0 ) ) + ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ) ) |
| 42 |
36 39 41
|
syl2anc |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( ( 0 · ( 𝑦 · 0 ) ) + ( 𝑐 · ( 𝑦 · 0 ) ) ) + 0 ) = ( ( 0 · ( 𝑦 · 0 ) ) + ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ) ) |
| 43 |
32 42
|
eqtr2d |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( 0 · ( 𝑦 · 0 ) ) + ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ) = ( ( 0 · ( 𝑦 · 0 ) ) + 0 ) ) |
| 44 |
26 37
|
sylan2 |
⊢ ( ( 𝑐 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑐 · ( 𝑦 · 0 ) ) ∈ ℝ ) |
| 45 |
|
readdcl |
⊢ ( ( ( 𝑐 · ( 𝑦 · 0 ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ∈ ℝ ) |
| 46 |
44 1 45
|
sylancl |
⊢ ( ( 𝑐 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ∈ ℝ ) |
| 47 |
9 11 46
|
syl2anc |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ∈ ℝ ) |
| 48 |
|
readdcan |
⊢ ( ( ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ∈ ℝ ∧ 0 ∈ ℝ ∧ ( 0 · ( 𝑦 · 0 ) ) ∈ ℝ ) → ( ( ( 0 · ( 𝑦 · 0 ) ) + ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ) = ( ( 0 · ( 𝑦 · 0 ) ) + 0 ) ↔ ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) = 0 ) ) |
| 49 |
1 48
|
mp3an2 |
⊢ ( ( ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ∈ ℝ ∧ ( 0 · ( 𝑦 · 0 ) ) ∈ ℝ ) → ( ( ( 0 · ( 𝑦 · 0 ) ) + ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ) = ( ( 0 · ( 𝑦 · 0 ) ) + 0 ) ↔ ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) = 0 ) ) |
| 50 |
47 35 49
|
syl2anc |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( ( 0 · ( 𝑦 · 0 ) ) + ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ) = ( ( 0 · ( 𝑦 · 0 ) ) + 0 ) ↔ ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) = 0 ) ) |
| 51 |
43 50
|
mpbid |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) = 0 ) |
| 52 |
22 51
|
eqtr3d |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 0 + 0 ) = 0 ) |
| 53 |
8 52
|
rexlimddv |
⊢ ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) → ( 0 + 0 ) = 0 ) |
| 54 |
53
|
expcom |
⊢ ( 𝑐 ≠ 0 → ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) → ( 0 + 0 ) = 0 ) ) |
| 55 |
6 54
|
pm2.61ine |
⊢ ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) → ( 0 + 0 ) = 0 ) |
| 56 |
55
|
rexlimiva |
⊢ ( ∃ 𝑐 ∈ ℝ ( 0 + 𝑐 ) = 0 → ( 0 + 0 ) = 0 ) |
| 57 |
1 2 56
|
mp2b |
⊢ ( 0 + 0 ) = 0 |