Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
⊢ 0 ∈ ℝ |
2 |
|
ax-rnegex |
⊢ ( 0 ∈ ℝ → ∃ 𝑐 ∈ ℝ ( 0 + 𝑐 ) = 0 ) |
3 |
|
oveq2 |
⊢ ( 𝑐 = 0 → ( 0 + 𝑐 ) = ( 0 + 0 ) ) |
4 |
3
|
eqeq1d |
⊢ ( 𝑐 = 0 → ( ( 0 + 𝑐 ) = 0 ↔ ( 0 + 0 ) = 0 ) ) |
5 |
4
|
biimpd |
⊢ ( 𝑐 = 0 → ( ( 0 + 𝑐 ) = 0 → ( 0 + 0 ) = 0 ) ) |
6 |
5
|
adantld |
⊢ ( 𝑐 = 0 → ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) → ( 0 + 0 ) = 0 ) ) |
7 |
|
ax-rrecex |
⊢ ( ( 𝑐 ∈ ℝ ∧ 𝑐 ≠ 0 ) → ∃ 𝑦 ∈ ℝ ( 𝑐 · 𝑦 ) = 1 ) |
8 |
7
|
adantlr |
⊢ ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) → ∃ 𝑦 ∈ ℝ ( 𝑐 · 𝑦 ) = 1 ) |
9 |
|
simplll |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → 𝑐 ∈ ℝ ) |
10 |
9
|
recnd |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → 𝑐 ∈ ℂ ) |
11 |
|
simprl |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → 𝑦 ∈ ℝ ) |
12 |
11
|
recnd |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → 𝑦 ∈ ℂ ) |
13 |
|
0cn |
⊢ 0 ∈ ℂ |
14 |
|
mulass |
⊢ ( ( 𝑐 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 0 ∈ ℂ ) → ( ( 𝑐 · 𝑦 ) · 0 ) = ( 𝑐 · ( 𝑦 · 0 ) ) ) |
15 |
13 14
|
mp3an3 |
⊢ ( ( 𝑐 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑐 · 𝑦 ) · 0 ) = ( 𝑐 · ( 𝑦 · 0 ) ) ) |
16 |
10 12 15
|
syl2anc |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( 𝑐 · 𝑦 ) · 0 ) = ( 𝑐 · ( 𝑦 · 0 ) ) ) |
17 |
|
oveq1 |
⊢ ( ( 𝑐 · 𝑦 ) = 1 → ( ( 𝑐 · 𝑦 ) · 0 ) = ( 1 · 0 ) ) |
18 |
13
|
mulid2i |
⊢ ( 1 · 0 ) = 0 |
19 |
17 18
|
eqtrdi |
⊢ ( ( 𝑐 · 𝑦 ) = 1 → ( ( 𝑐 · 𝑦 ) · 0 ) = 0 ) |
20 |
19
|
ad2antll |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( 𝑐 · 𝑦 ) · 0 ) = 0 ) |
21 |
16 20
|
eqtr3d |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 𝑐 · ( 𝑦 · 0 ) ) = 0 ) |
22 |
21
|
oveq1d |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) = ( 0 + 0 ) ) |
23 |
|
simpllr |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 0 + 𝑐 ) = 0 ) |
24 |
23
|
oveq1d |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( 0 + 𝑐 ) · ( 𝑦 · 0 ) ) = ( 0 · ( 𝑦 · 0 ) ) ) |
25 |
|
remulcl |
⊢ ( ( 𝑦 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝑦 · 0 ) ∈ ℝ ) |
26 |
1 25
|
mpan2 |
⊢ ( 𝑦 ∈ ℝ → ( 𝑦 · 0 ) ∈ ℝ ) |
27 |
26
|
ad2antrl |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 𝑦 · 0 ) ∈ ℝ ) |
28 |
27
|
recnd |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 𝑦 · 0 ) ∈ ℂ ) |
29 |
|
adddir |
⊢ ( ( 0 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ ( 𝑦 · 0 ) ∈ ℂ ) → ( ( 0 + 𝑐 ) · ( 𝑦 · 0 ) ) = ( ( 0 · ( 𝑦 · 0 ) ) + ( 𝑐 · ( 𝑦 · 0 ) ) ) ) |
30 |
13 10 28 29
|
mp3an2i |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( 0 + 𝑐 ) · ( 𝑦 · 0 ) ) = ( ( 0 · ( 𝑦 · 0 ) ) + ( 𝑐 · ( 𝑦 · 0 ) ) ) ) |
31 |
24 30
|
eqtr3d |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 0 · ( 𝑦 · 0 ) ) = ( ( 0 · ( 𝑦 · 0 ) ) + ( 𝑐 · ( 𝑦 · 0 ) ) ) ) |
32 |
31
|
oveq1d |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( 0 · ( 𝑦 · 0 ) ) + 0 ) = ( ( ( 0 · ( 𝑦 · 0 ) ) + ( 𝑐 · ( 𝑦 · 0 ) ) ) + 0 ) ) |
33 |
|
remulcl |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝑦 · 0 ) ∈ ℝ ) → ( 0 · ( 𝑦 · 0 ) ) ∈ ℝ ) |
34 |
1 26 33
|
sylancr |
⊢ ( 𝑦 ∈ ℝ → ( 0 · ( 𝑦 · 0 ) ) ∈ ℝ ) |
35 |
34
|
ad2antrl |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 0 · ( 𝑦 · 0 ) ) ∈ ℝ ) |
36 |
35
|
recnd |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 0 · ( 𝑦 · 0 ) ) ∈ ℂ ) |
37 |
|
remulcl |
⊢ ( ( 𝑐 ∈ ℝ ∧ ( 𝑦 · 0 ) ∈ ℝ ) → ( 𝑐 · ( 𝑦 · 0 ) ) ∈ ℝ ) |
38 |
9 27 37
|
syl2anc |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 𝑐 · ( 𝑦 · 0 ) ) ∈ ℝ ) |
39 |
38
|
recnd |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 𝑐 · ( 𝑦 · 0 ) ) ∈ ℂ ) |
40 |
|
addass |
⊢ ( ( ( 0 · ( 𝑦 · 0 ) ) ∈ ℂ ∧ ( 𝑐 · ( 𝑦 · 0 ) ) ∈ ℂ ∧ 0 ∈ ℂ ) → ( ( ( 0 · ( 𝑦 · 0 ) ) + ( 𝑐 · ( 𝑦 · 0 ) ) ) + 0 ) = ( ( 0 · ( 𝑦 · 0 ) ) + ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ) ) |
41 |
13 40
|
mp3an3 |
⊢ ( ( ( 0 · ( 𝑦 · 0 ) ) ∈ ℂ ∧ ( 𝑐 · ( 𝑦 · 0 ) ) ∈ ℂ ) → ( ( ( 0 · ( 𝑦 · 0 ) ) + ( 𝑐 · ( 𝑦 · 0 ) ) ) + 0 ) = ( ( 0 · ( 𝑦 · 0 ) ) + ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ) ) |
42 |
36 39 41
|
syl2anc |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( ( 0 · ( 𝑦 · 0 ) ) + ( 𝑐 · ( 𝑦 · 0 ) ) ) + 0 ) = ( ( 0 · ( 𝑦 · 0 ) ) + ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ) ) |
43 |
32 42
|
eqtr2d |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( 0 · ( 𝑦 · 0 ) ) + ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ) = ( ( 0 · ( 𝑦 · 0 ) ) + 0 ) ) |
44 |
26 37
|
sylan2 |
⊢ ( ( 𝑐 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑐 · ( 𝑦 · 0 ) ) ∈ ℝ ) |
45 |
|
readdcl |
⊢ ( ( ( 𝑐 · ( 𝑦 · 0 ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ∈ ℝ ) |
46 |
44 1 45
|
sylancl |
⊢ ( ( 𝑐 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ∈ ℝ ) |
47 |
9 11 46
|
syl2anc |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ∈ ℝ ) |
48 |
|
readdcan |
⊢ ( ( ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ∈ ℝ ∧ 0 ∈ ℝ ∧ ( 0 · ( 𝑦 · 0 ) ) ∈ ℝ ) → ( ( ( 0 · ( 𝑦 · 0 ) ) + ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ) = ( ( 0 · ( 𝑦 · 0 ) ) + 0 ) ↔ ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) = 0 ) ) |
49 |
1 48
|
mp3an2 |
⊢ ( ( ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ∈ ℝ ∧ ( 0 · ( 𝑦 · 0 ) ) ∈ ℝ ) → ( ( ( 0 · ( 𝑦 · 0 ) ) + ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ) = ( ( 0 · ( 𝑦 · 0 ) ) + 0 ) ↔ ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) = 0 ) ) |
50 |
47 35 49
|
syl2anc |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( ( 0 · ( 𝑦 · 0 ) ) + ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ) = ( ( 0 · ( 𝑦 · 0 ) ) + 0 ) ↔ ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) = 0 ) ) |
51 |
43 50
|
mpbid |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) = 0 ) |
52 |
22 51
|
eqtr3d |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 0 + 0 ) = 0 ) |
53 |
8 52
|
rexlimddv |
⊢ ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) → ( 0 + 0 ) = 0 ) |
54 |
53
|
expcom |
⊢ ( 𝑐 ≠ 0 → ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) → ( 0 + 0 ) = 0 ) ) |
55 |
6 54
|
pm2.61ine |
⊢ ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) → ( 0 + 0 ) = 0 ) |
56 |
55
|
rexlimiva |
⊢ ( ∃ 𝑐 ∈ ℝ ( 0 + 𝑐 ) = 0 → ( 0 + 0 ) = 0 ) |
57 |
1 2 56
|
mp2b |
⊢ ( 0 + 0 ) = 0 |