Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
⊢ ∅ ∈ V |
2 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
3 |
|
00lss |
⊢ ∅ = ( LSubSp ‘ ∅ ) |
4 |
|
eqid |
⊢ ( LSpan ‘ ∅ ) = ( LSpan ‘ ∅ ) |
5 |
2 3 4
|
lspfval |
⊢ ( ∅ ∈ V → ( LSpan ‘ ∅ ) = ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) ) |
6 |
1 5
|
ax-mp |
⊢ ( LSpan ‘ ∅ ) = ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) |
7 |
|
eqid |
⊢ ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) = ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) |
8 |
7
|
dmmpt |
⊢ dom ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) = { 𝑎 ∈ 𝒫 ∅ ∣ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ∈ V } |
9 |
|
rab0 |
⊢ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } = ∅ |
10 |
9
|
inteqi |
⊢ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } = ∩ ∅ |
11 |
|
int0 |
⊢ ∩ ∅ = V |
12 |
10 11
|
eqtri |
⊢ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } = V |
13 |
|
vprc |
⊢ ¬ V ∈ V |
14 |
12 13
|
eqneltri |
⊢ ¬ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ∈ V |
15 |
14
|
rgenw |
⊢ ∀ 𝑎 ∈ 𝒫 ∅ ¬ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ∈ V |
16 |
|
rabeq0 |
⊢ ( { 𝑎 ∈ 𝒫 ∅ ∣ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ∈ V } = ∅ ↔ ∀ 𝑎 ∈ 𝒫 ∅ ¬ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ∈ V ) |
17 |
15 16
|
mpbir |
⊢ { 𝑎 ∈ 𝒫 ∅ ∣ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ∈ V } = ∅ |
18 |
8 17
|
eqtri |
⊢ dom ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) = ∅ |
19 |
|
mptrel |
⊢ Rel ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) |
20 |
|
reldm0 |
⊢ ( Rel ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) → ( ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) = ∅ ↔ dom ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) = ∅ ) ) |
21 |
19 20
|
ax-mp |
⊢ ( ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) = ∅ ↔ dom ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) = ∅ ) |
22 |
18 21
|
mpbir |
⊢ ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) = ∅ |
23 |
6 22
|
eqtr2i |
⊢ ∅ = ( LSpan ‘ ∅ ) |