| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ex |
⊢ ∅ ∈ V |
| 2 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
| 3 |
|
00lss |
⊢ ∅ = ( LSubSp ‘ ∅ ) |
| 4 |
|
eqid |
⊢ ( LSpan ‘ ∅ ) = ( LSpan ‘ ∅ ) |
| 5 |
2 3 4
|
lspfval |
⊢ ( ∅ ∈ V → ( LSpan ‘ ∅ ) = ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) ) |
| 6 |
1 5
|
ax-mp |
⊢ ( LSpan ‘ ∅ ) = ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) |
| 7 |
|
eqid |
⊢ ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) = ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) |
| 8 |
7
|
dmmpt |
⊢ dom ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) = { 𝑎 ∈ 𝒫 ∅ ∣ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ∈ V } |
| 9 |
|
rab0 |
⊢ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } = ∅ |
| 10 |
9
|
inteqi |
⊢ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } = ∩ ∅ |
| 11 |
|
int0 |
⊢ ∩ ∅ = V |
| 12 |
10 11
|
eqtri |
⊢ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } = V |
| 13 |
|
vprc |
⊢ ¬ V ∈ V |
| 14 |
12 13
|
eqneltri |
⊢ ¬ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ∈ V |
| 15 |
14
|
rgenw |
⊢ ∀ 𝑎 ∈ 𝒫 ∅ ¬ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ∈ V |
| 16 |
|
rabeq0 |
⊢ ( { 𝑎 ∈ 𝒫 ∅ ∣ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ∈ V } = ∅ ↔ ∀ 𝑎 ∈ 𝒫 ∅ ¬ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ∈ V ) |
| 17 |
15 16
|
mpbir |
⊢ { 𝑎 ∈ 𝒫 ∅ ∣ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ∈ V } = ∅ |
| 18 |
8 17
|
eqtri |
⊢ dom ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) = ∅ |
| 19 |
|
mptrel |
⊢ Rel ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) |
| 20 |
|
reldm0 |
⊢ ( Rel ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) → ( ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) = ∅ ↔ dom ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) = ∅ ) ) |
| 21 |
19 20
|
ax-mp |
⊢ ( ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) = ∅ ↔ dom ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) = ∅ ) |
| 22 |
18 21
|
mpbir |
⊢ ( 𝑎 ∈ 𝒫 ∅ ↦ ∩ { 𝑏 ∈ ∅ ∣ 𝑎 ⊆ 𝑏 } ) = ∅ |
| 23 |
6 22
|
eqtr2i |
⊢ ∅ = ( LSpan ‘ ∅ ) |