Step |
Hyp |
Ref |
Expression |
1 |
|
noel |
⊢ ¬ 𝑎 ∈ ∅ |
2 |
|
noel |
⊢ ¬ ( 𝑎 ‘ ( 1o × { 0 } ) ) ∈ ∅ |
3 |
|
eqid |
⊢ ( Poly1 ‘ ∅ ) = ( Poly1 ‘ ∅ ) |
4 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ ∅ ) ) = ( Base ‘ ( Poly1 ‘ ∅ ) ) |
5 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
6 |
3 4 5
|
ply1basf |
⊢ ( 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ∅ ) ) → 𝑎 : ( ℕ0 ↑m 1o ) ⟶ ∅ ) |
7 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
8 |
7
|
fconst6 |
⊢ ( 1o × { 0 } ) : 1o ⟶ ℕ0 |
9 |
|
nn0ex |
⊢ ℕ0 ∈ V |
10 |
|
1oex |
⊢ 1o ∈ V |
11 |
9 10
|
elmap |
⊢ ( ( 1o × { 0 } ) ∈ ( ℕ0 ↑m 1o ) ↔ ( 1o × { 0 } ) : 1o ⟶ ℕ0 ) |
12 |
8 11
|
mpbir |
⊢ ( 1o × { 0 } ) ∈ ( ℕ0 ↑m 1o ) |
13 |
|
ffvelrn |
⊢ ( ( 𝑎 : ( ℕ0 ↑m 1o ) ⟶ ∅ ∧ ( 1o × { 0 } ) ∈ ( ℕ0 ↑m 1o ) ) → ( 𝑎 ‘ ( 1o × { 0 } ) ) ∈ ∅ ) |
14 |
6 12 13
|
sylancl |
⊢ ( 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ∅ ) ) → ( 𝑎 ‘ ( 1o × { 0 } ) ) ∈ ∅ ) |
15 |
2 14
|
mto |
⊢ ¬ 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ∅ ) ) |
16 |
1 15
|
2false |
⊢ ( 𝑎 ∈ ∅ ↔ 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ∅ ) ) ) |
17 |
16
|
eqriv |
⊢ ∅ = ( Base ‘ ( Poly1 ‘ ∅ ) ) |