Metamath Proof Explorer


Theorem 00ply1bas

Description: Lemma for ply1basfvi and deg1fvi . (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Assertion 00ply1bas ∅ = ( Base ‘ ( Poly1 ‘ ∅ ) )

Proof

Step Hyp Ref Expression
1 noel ¬ 𝑎 ∈ ∅
2 noel ¬ ( 𝑎 ‘ ( 1o × { 0 } ) ) ∈ ∅
3 eqid ( Poly1 ‘ ∅ ) = ( Poly1 ‘ ∅ )
4 eqid ( Base ‘ ( Poly1 ‘ ∅ ) ) = ( Base ‘ ( Poly1 ‘ ∅ ) )
5 base0 ∅ = ( Base ‘ ∅ )
6 3 4 5 ply1basf ( 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ∅ ) ) → 𝑎 : ( ℕ0m 1o ) ⟶ ∅ )
7 0nn0 0 ∈ ℕ0
8 7 fconst6 ( 1o × { 0 } ) : 1o ⟶ ℕ0
9 nn0ex 0 ∈ V
10 1oex 1o ∈ V
11 9 10 elmap ( ( 1o × { 0 } ) ∈ ( ℕ0m 1o ) ↔ ( 1o × { 0 } ) : 1o ⟶ ℕ0 )
12 8 11 mpbir ( 1o × { 0 } ) ∈ ( ℕ0m 1o )
13 ffvelrn ( ( 𝑎 : ( ℕ0m 1o ) ⟶ ∅ ∧ ( 1o × { 0 } ) ∈ ( ℕ0m 1o ) ) → ( 𝑎 ‘ ( 1o × { 0 } ) ) ∈ ∅ )
14 6 12 13 sylancl ( 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ∅ ) ) → ( 𝑎 ‘ ( 1o × { 0 } ) ) ∈ ∅ )
15 2 14 mto ¬ 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ∅ ) )
16 1 15 2false ( 𝑎 ∈ ∅ ↔ 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ∅ ) ) )
17 16 eqriv ∅ = ( Base ‘ ( Poly1 ‘ ∅ ) )