Metamath Proof Explorer


Theorem 01eq0ring

Description: If the zero and the identity element of a ring are the same, the ring is the zero ring. (Contributed by AV, 16-Apr-2019) (Proof shortened by SN, 23-Feb-2025)

Ref Expression
Hypotheses 0ring.b 𝐵 = ( Base ‘ 𝑅 )
0ring.0 0 = ( 0g𝑅 )
0ring01eq.1 1 = ( 1r𝑅 )
Assertion 01eq0ring ( ( 𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 } )

Proof

Step Hyp Ref Expression
1 0ring.b 𝐵 = ( Base ‘ 𝑅 )
2 0ring.0 0 = ( 0g𝑅 )
3 0ring01eq.1 1 = ( 1r𝑅 )
4 eqcom ( 0 = 11 = 0 )
5 1 2 ring0cl ( 𝑅 ∈ Ring → 0𝐵 )
6 5 ne0d ( 𝑅 ∈ Ring → 𝐵 ≠ ∅ )
7 5 adantr ( ( 𝑅 ∈ Ring ∧ 𝑥𝐵 ) → 0𝐵 )
8 1 3 2 ring1eq0 ( ( 𝑅 ∈ Ring ∧ 𝑥𝐵0𝐵 ) → ( 1 = 0𝑥 = 0 ) )
9 7 8 mpd3an3 ( ( 𝑅 ∈ Ring ∧ 𝑥𝐵 ) → ( 1 = 0𝑥 = 0 ) )
10 9 impancom ( ( 𝑅 ∈ Ring ∧ 1 = 0 ) → ( 𝑥𝐵𝑥 = 0 ) )
11 10 ralrimiv ( ( 𝑅 ∈ Ring ∧ 1 = 0 ) → ∀ 𝑥𝐵 𝑥 = 0 )
12 eqsn ( 𝐵 ≠ ∅ → ( 𝐵 = { 0 } ↔ ∀ 𝑥𝐵 𝑥 = 0 ) )
13 12 biimpar ( ( 𝐵 ≠ ∅ ∧ ∀ 𝑥𝐵 𝑥 = 0 ) → 𝐵 = { 0 } )
14 6 11 13 syl2an2r ( ( 𝑅 ∈ Ring ∧ 1 = 0 ) → 𝐵 = { 0 } )
15 4 14 sylan2b ( ( 𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 } )