Step |
Hyp |
Ref |
Expression |
1 |
|
0ring.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
0ring.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
0ring01eq.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
|
eqcom |
⊢ ( 0 = 1 ↔ 1 = 0 ) |
5 |
1 2
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐵 ) |
6 |
5
|
ne0d |
⊢ ( 𝑅 ∈ Ring → 𝐵 ≠ ∅ ) |
7 |
5
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) → 0 ∈ 𝐵 ) |
8 |
1 3 2
|
ring1eq0 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → ( 1 = 0 → 𝑥 = 0 ) ) |
9 |
7 8
|
mpd3an3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) → ( 1 = 0 → 𝑥 = 0 ) ) |
10 |
9
|
impancom |
⊢ ( ( 𝑅 ∈ Ring ∧ 1 = 0 ) → ( 𝑥 ∈ 𝐵 → 𝑥 = 0 ) ) |
11 |
10
|
ralrimiv |
⊢ ( ( 𝑅 ∈ Ring ∧ 1 = 0 ) → ∀ 𝑥 ∈ 𝐵 𝑥 = 0 ) |
12 |
|
eqsn |
⊢ ( 𝐵 ≠ ∅ → ( 𝐵 = { 0 } ↔ ∀ 𝑥 ∈ 𝐵 𝑥 = 0 ) ) |
13 |
12
|
biimpar |
⊢ ( ( 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 𝑥 = 0 ) → 𝐵 = { 0 } ) |
14 |
6 11 13
|
syl2an2r |
⊢ ( ( 𝑅 ∈ Ring ∧ 1 = 0 ) → 𝐵 = { 0 } ) |
15 |
4 14
|
sylan2b |
⊢ ( ( 𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 } ) |