| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ring.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | 0ring.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 3 |  | 0ring01eq.1 | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 4 |  | eqcom | ⊢ (  0   =   1   ↔   1   =   0  ) | 
						
							| 5 | 1 2 | ring0cl | ⊢ ( 𝑅  ∈  Ring  →   0   ∈  𝐵 ) | 
						
							| 6 | 5 | ne0d | ⊢ ( 𝑅  ∈  Ring  →  𝐵  ≠  ∅ ) | 
						
							| 7 | 5 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑥  ∈  𝐵 )  →   0   ∈  𝐵 ) | 
						
							| 8 | 1 3 2 | ring1eq0 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑥  ∈  𝐵  ∧   0   ∈  𝐵 )  →  (  1   =   0   →  𝑥  =   0  ) ) | 
						
							| 9 | 7 8 | mpd3an3 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑥  ∈  𝐵 )  →  (  1   =   0   →  𝑥  =   0  ) ) | 
						
							| 10 | 9 | impancom | ⊢ ( ( 𝑅  ∈  Ring  ∧   1   =   0  )  →  ( 𝑥  ∈  𝐵  →  𝑥  =   0  ) ) | 
						
							| 11 | 10 | ralrimiv | ⊢ ( ( 𝑅  ∈  Ring  ∧   1   =   0  )  →  ∀ 𝑥  ∈  𝐵 𝑥  =   0  ) | 
						
							| 12 |  | eqsn | ⊢ ( 𝐵  ≠  ∅  →  ( 𝐵  =  {  0  }  ↔  ∀ 𝑥  ∈  𝐵 𝑥  =   0  ) ) | 
						
							| 13 | 12 | biimpar | ⊢ ( ( 𝐵  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐵 𝑥  =   0  )  →  𝐵  =  {  0  } ) | 
						
							| 14 | 6 11 13 | syl2an2r | ⊢ ( ( 𝑅  ∈  Ring  ∧   1   =   0  )  →  𝐵  =  {  0  } ) | 
						
							| 15 | 4 14 | sylan2b | ⊢ ( ( 𝑅  ∈  Ring  ∧   0   =   1  )  →  𝐵  =  {  0  } ) |