Step |
Hyp |
Ref |
Expression |
1 |
|
0ring.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
0ring.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
0ring01eq.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
5 |
|
hashv01gt1 |
⊢ ( 𝐵 ∈ V → ( ( ♯ ‘ 𝐵 ) = 0 ∨ ( ♯ ‘ 𝐵 ) = 1 ∨ 1 < ( ♯ ‘ 𝐵 ) ) ) |
6 |
4 5
|
ax-mp |
⊢ ( ( ♯ ‘ 𝐵 ) = 0 ∨ ( ♯ ‘ 𝐵 ) = 1 ∨ 1 < ( ♯ ‘ 𝐵 ) ) |
7 |
|
hasheq0 |
⊢ ( 𝐵 ∈ V → ( ( ♯ ‘ 𝐵 ) = 0 ↔ 𝐵 = ∅ ) ) |
8 |
4 7
|
ax-mp |
⊢ ( ( ♯ ‘ 𝐵 ) = 0 ↔ 𝐵 = ∅ ) |
9 |
|
ne0i |
⊢ ( 0 ∈ 𝐵 → 𝐵 ≠ ∅ ) |
10 |
|
eqneqall |
⊢ ( 𝐵 = ∅ → ( 𝐵 ≠ ∅ → ( ( ♯ ‘ 𝐵 ) ≠ 1 → 0 ≠ 1 ) ) ) |
11 |
9 10
|
syl5com |
⊢ ( 0 ∈ 𝐵 → ( 𝐵 = ∅ → ( ( ♯ ‘ 𝐵 ) ≠ 1 → 0 ≠ 1 ) ) ) |
12 |
8 11
|
syl5bi |
⊢ ( 0 ∈ 𝐵 → ( ( ♯ ‘ 𝐵 ) = 0 → ( ( ♯ ‘ 𝐵 ) ≠ 1 → 0 ≠ 1 ) ) ) |
13 |
1 2
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐵 ) |
14 |
12 13
|
syl11 |
⊢ ( ( ♯ ‘ 𝐵 ) = 0 → ( 𝑅 ∈ Ring → ( ( ♯ ‘ 𝐵 ) ≠ 1 → 0 ≠ 1 ) ) ) |
15 |
|
eqneqall |
⊢ ( ( ♯ ‘ 𝐵 ) = 1 → ( ( ♯ ‘ 𝐵 ) ≠ 1 → 0 ≠ 1 ) ) |
16 |
15
|
a1d |
⊢ ( ( ♯ ‘ 𝐵 ) = 1 → ( 𝑅 ∈ Ring → ( ( ♯ ‘ 𝐵 ) ≠ 1 → 0 ≠ 1 ) ) ) |
17 |
1 3 2
|
ring1ne0 |
⊢ ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) → 1 ≠ 0 ) |
18 |
17
|
necomd |
⊢ ( ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ 𝐵 ) ) → 0 ≠ 1 ) |
19 |
18
|
ex |
⊢ ( 𝑅 ∈ Ring → ( 1 < ( ♯ ‘ 𝐵 ) → 0 ≠ 1 ) ) |
20 |
19
|
a1i |
⊢ ( ( ♯ ‘ 𝐵 ) ≠ 1 → ( 𝑅 ∈ Ring → ( 1 < ( ♯ ‘ 𝐵 ) → 0 ≠ 1 ) ) ) |
21 |
20
|
com13 |
⊢ ( 1 < ( ♯ ‘ 𝐵 ) → ( 𝑅 ∈ Ring → ( ( ♯ ‘ 𝐵 ) ≠ 1 → 0 ≠ 1 ) ) ) |
22 |
14 16 21
|
3jaoi |
⊢ ( ( ( ♯ ‘ 𝐵 ) = 0 ∨ ( ♯ ‘ 𝐵 ) = 1 ∨ 1 < ( ♯ ‘ 𝐵 ) ) → ( 𝑅 ∈ Ring → ( ( ♯ ‘ 𝐵 ) ≠ 1 → 0 ≠ 1 ) ) ) |
23 |
6 22
|
ax-mp |
⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ 𝐵 ) ≠ 1 → 0 ≠ 1 ) ) |
24 |
23
|
necon4d |
⊢ ( 𝑅 ∈ Ring → ( 0 = 1 → ( ♯ ‘ 𝐵 ) = 1 ) ) |
25 |
24
|
imp |
⊢ ( ( 𝑅 ∈ Ring ∧ 0 = 1 ) → ( ♯ ‘ 𝐵 ) = 1 ) |
26 |
1 2
|
0ring |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 𝐵 = { 0 } ) |
27 |
25 26
|
syldan |
⊢ ( ( 𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 } ) |