Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } = { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } |
2 |
|
eqid |
⊢ sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) = sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) |
3 |
1 2
|
sqrlem4 |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ∈ ℝ+ ∧ sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ≤ 1 ) ) |
4 |
|
eqid |
⊢ { 𝑧 ∣ ∃ 𝑤 ∈ { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } ∃ 𝑥 ∈ { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } 𝑧 = ( 𝑤 · 𝑥 ) } = { 𝑧 ∣ ∃ 𝑤 ∈ { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } ∃ 𝑥 ∈ { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } 𝑧 = ( 𝑤 · 𝑥 ) } |
5 |
1 2 4
|
sqrlem7 |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ↑ 2 ) = 𝐴 ) |
6 |
|
breq1 |
⊢ ( 𝑥 = sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) → ( 𝑥 ≤ 1 ↔ sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ≤ 1 ) ) |
7 |
|
oveq1 |
⊢ ( 𝑥 = sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) → ( 𝑥 ↑ 2 ) = ( sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ↑ 2 ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑥 = sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) → ( ( 𝑥 ↑ 2 ) = 𝐴 ↔ ( sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ↑ 2 ) = 𝐴 ) ) |
9 |
6 8
|
anbi12d |
⊢ ( 𝑥 = sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) → ( ( 𝑥 ≤ 1 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ↔ ( sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ≤ 1 ∧ ( sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ↑ 2 ) = 𝐴 ) ) ) |
10 |
9
|
rspcev |
⊢ ( ( sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ∈ ℝ+ ∧ ( sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ≤ 1 ∧ ( sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ↑ 2 ) = 𝐴 ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝑥 ≤ 1 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |
11 |
10
|
anassrs |
⊢ ( ( ( sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ∈ ℝ+ ∧ sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ≤ 1 ) ∧ ( sup ( { 𝑦 ∈ ℝ+ ∣ ( 𝑦 ↑ 2 ) ≤ 𝐴 } , ℝ , < ) ↑ 2 ) = 𝐴 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑥 ≤ 1 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |
12 |
3 5 11
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑥 ≤ 1 ∧ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |