Metamath Proof Explorer
Description: The identically zero operator is bounded. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
0bdop |
⊢ 0hop ∈ BndLinOp |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
0lnop |
⊢ 0hop ∈ LinOp |
2 |
|
nmop0 |
⊢ ( normop ‘ 0hop ) = 0 |
3 |
|
0ltpnf |
⊢ 0 < +∞ |
4 |
2 3
|
eqbrtri |
⊢ ( normop ‘ 0hop ) < +∞ |
5 |
|
elbdop |
⊢ ( 0hop ∈ BndLinOp ↔ ( 0hop ∈ LinOp ∧ ( normop ‘ 0hop ) < +∞ ) ) |
6 |
1 4 5
|
mpbir2an |
⊢ 0hop ∈ BndLinOp |