Metamath Proof Explorer


Theorem 0cat

Description: The empty set is a category, theempty category, see example 3.3(4.c) in Adamek p. 24. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Assertion 0cat ∅ ∈ Cat

Proof

Step Hyp Ref Expression
1 0ex ∅ ∈ V
2 base0 ∅ = ( Base ‘ ∅ )
3 0catg ( ( ∅ ∈ V ∧ ∅ = ( Base ‘ ∅ ) ) → ∅ ∈ Cat )
4 1 2 3 mp2an ∅ ∈ Cat