Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) → ∅ = ( Base ‘ 𝐶 ) ) |
2 |
|
eqidd |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) |
3 |
|
eqidd |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) → ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) ) |
4 |
|
simpl |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) → 𝐶 ∈ 𝑉 ) |
5 |
|
noel |
⊢ ¬ 𝑥 ∈ ∅ |
6 |
5
|
pm2.21i |
⊢ ( 𝑥 ∈ ∅ → ∅ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ 𝑥 ∈ ∅ ) → ∅ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
8 |
|
simpr1 |
⊢ ( ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) ) → 𝑥 ∈ ∅ ) |
9 |
5
|
pm2.21i |
⊢ ( 𝑥 ∈ ∅ → ( ∅ ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ) |
10 |
8 9
|
syl |
⊢ ( ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) ) → ( ∅ ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ) |
11 |
|
simpr1 |
⊢ ( ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 𝑥 ∈ ∅ ) |
12 |
5
|
pm2.21i |
⊢ ( 𝑥 ∈ ∅ → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) ∅ ) = 𝑓 ) |
13 |
11 12
|
syl |
⊢ ( ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) ∅ ) = 𝑓 ) |
14 |
|
simp21 |
⊢ ( ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅ ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑥 ∈ ∅ ) |
15 |
5
|
pm2.21i |
⊢ ( 𝑥 ∈ ∅ → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
16 |
14 15
|
syl |
⊢ ( ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅ ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
17 |
|
simp2ll |
⊢ ( ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ ( ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ) ∧ ( 𝑧 ∈ ∅ ∧ 𝑤 ∈ ∅ ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) → 𝑥 ∈ ∅ ) |
18 |
5
|
pm2.21i |
⊢ ( 𝑥 ∈ ∅ → ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) |
19 |
17 18
|
syl |
⊢ ( ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ ( ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ) ∧ ( 𝑧 ∈ ∅ ∧ 𝑤 ∈ ∅ ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) → ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) |
20 |
1 2 3 4 7 10 13 16 19
|
iscatd |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) |