Step |
Hyp |
Ref |
Expression |
1 |
|
0clwlk.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
1
|
0wlk |
⊢ ( 𝐺 ∈ 𝑋 → ( ∅ ( Walks ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
3 |
2
|
anbi2d |
⊢ ( 𝐺 ∈ 𝑋 → ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ ∅ ) ) ∧ ∅ ( Walks ‘ 𝐺 ) 𝑃 ) ↔ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ ∅ ) ) ∧ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) ) |
4 |
|
isclwlk |
⊢ ( ∅ ( ClWalks ‘ 𝐺 ) 𝑃 ↔ ( ∅ ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ ∅ ) ) ) ) |
5 |
4
|
biancomi |
⊢ ( ∅ ( ClWalks ‘ 𝐺 ) 𝑃 ↔ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ ∅ ) ) ∧ ∅ ( Walks ‘ 𝐺 ) 𝑃 ) ) |
6 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
7 |
6
|
eqcomi |
⊢ 0 = ( ♯ ‘ ∅ ) |
8 |
7
|
fveq2i |
⊢ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ ∅ ) ) |
9 |
8
|
biantrur |
⊢ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ↔ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ ∅ ) ) ∧ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
10 |
3 5 9
|
3bitr4g |
⊢ ( 𝐺 ∈ 𝑋 → ( ∅ ( ClWalks ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |