| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-icn |
⊢ i ∈ ℂ |
| 2 |
|
cnre |
⊢ ( i ∈ ℂ → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ i = ( 𝑥 + ( i · 𝑦 ) ) ) |
| 3 |
|
ax-rnegex |
⊢ ( 𝑥 ∈ ℝ → ∃ 𝑧 ∈ ℝ ( 𝑥 + 𝑧 ) = 0 ) |
| 4 |
|
readdcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑥 + 𝑧 ) ∈ ℝ ) |
| 5 |
|
eleq1 |
⊢ ( ( 𝑥 + 𝑧 ) = 0 → ( ( 𝑥 + 𝑧 ) ∈ ℝ ↔ 0 ∈ ℝ ) ) |
| 6 |
4 5
|
syl5ibcom |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( 𝑥 + 𝑧 ) = 0 → 0 ∈ ℝ ) ) |
| 7 |
6
|
rexlimdva |
⊢ ( 𝑥 ∈ ℝ → ( ∃ 𝑧 ∈ ℝ ( 𝑥 + 𝑧 ) = 0 → 0 ∈ ℝ ) ) |
| 8 |
3 7
|
mpd |
⊢ ( 𝑥 ∈ ℝ → 0 ∈ ℝ ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ ∧ ∃ 𝑦 ∈ ℝ i = ( 𝑥 + ( i · 𝑦 ) ) ) → 0 ∈ ℝ ) |
| 10 |
9
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ i = ( 𝑥 + ( i · 𝑦 ) ) → 0 ∈ ℝ ) |
| 11 |
1 2 10
|
mp2b |
⊢ 0 ∈ ℝ |
| 12 |
11
|
recni |
⊢ 0 ∈ ℂ |