| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f0 | ⊢ ∅ : ∅ ⟶ ∅ | 
						
							| 2 |  | cnv0 | ⊢ ◡ ∅  =  ∅ | 
						
							| 3 | 2 | imaeq1i | ⊢ ( ◡ ∅  “  𝑥 )  =  ( ∅  “  𝑥 ) | 
						
							| 4 |  | 0ima | ⊢ ( ∅  “  𝑥 )  =  ∅ | 
						
							| 5 | 3 4 | eqtri | ⊢ ( ◡ ∅  “  𝑥 )  =  ∅ | 
						
							| 6 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 7 | 6 | snid | ⊢ ∅  ∈  { ∅ } | 
						
							| 8 | 5 7 | eqeltri | ⊢ ( ◡ ∅  “  𝑥 )  ∈  { ∅ } | 
						
							| 9 | 8 | rgenw | ⊢ ∀ 𝑥  ∈  { ∅ } ( ◡ ∅  “  𝑥 )  ∈  { ∅ } | 
						
							| 10 |  | sn0topon | ⊢ { ∅ }  ∈  ( TopOn ‘ ∅ ) | 
						
							| 11 |  | iscn | ⊢ ( ( { ∅ }  ∈  ( TopOn ‘ ∅ )  ∧  { ∅ }  ∈  ( TopOn ‘ ∅ ) )  →  ( ∅  ∈  ( { ∅ }  Cn  { ∅ } )  ↔  ( ∅ : ∅ ⟶ ∅  ∧  ∀ 𝑥  ∈  { ∅ } ( ◡ ∅  “  𝑥 )  ∈  { ∅ } ) ) ) | 
						
							| 12 | 10 10 11 | mp2an | ⊢ ( ∅  ∈  ( { ∅ }  Cn  { ∅ } )  ↔  ( ∅ : ∅ ⟶ ∅  ∧  ∀ 𝑥  ∈  { ∅ } ( ◡ ∅  “  𝑥 )  ∈  { ∅ } ) ) | 
						
							| 13 | 1 9 12 | mpbir2an | ⊢ ∅  ∈  ( { ∅ }  Cn  { ∅ } ) |