Step |
Hyp |
Ref |
Expression |
1 |
|
ho0f |
⊢ 0hop : ℋ ⟶ ℋ |
2 |
|
1rp |
⊢ 1 ∈ ℝ+ |
3 |
|
ho0val |
⊢ ( 𝑤 ∈ ℋ → ( 0hop ‘ 𝑤 ) = 0ℎ ) |
4 |
|
ho0val |
⊢ ( 𝑥 ∈ ℋ → ( 0hop ‘ 𝑥 ) = 0ℎ ) |
5 |
3 4
|
oveqan12rd |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( 0hop ‘ 𝑤 ) −ℎ ( 0hop ‘ 𝑥 ) ) = ( 0ℎ −ℎ 0ℎ ) ) |
6 |
5
|
adantlr |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) → ( ( 0hop ‘ 𝑤 ) −ℎ ( 0hop ‘ 𝑥 ) ) = ( 0ℎ −ℎ 0ℎ ) ) |
7 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
8 |
|
hvsubid |
⊢ ( 0ℎ ∈ ℋ → ( 0ℎ −ℎ 0ℎ ) = 0ℎ ) |
9 |
7 8
|
ax-mp |
⊢ ( 0ℎ −ℎ 0ℎ ) = 0ℎ |
10 |
6 9
|
eqtrdi |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) → ( ( 0hop ‘ 𝑤 ) −ℎ ( 0hop ‘ 𝑥 ) ) = 0ℎ ) |
11 |
10
|
fveq2d |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) → ( normℎ ‘ ( ( 0hop ‘ 𝑤 ) −ℎ ( 0hop ‘ 𝑥 ) ) ) = ( normℎ ‘ 0ℎ ) ) |
12 |
|
norm0 |
⊢ ( normℎ ‘ 0ℎ ) = 0 |
13 |
11 12
|
eqtrdi |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) → ( normℎ ‘ ( ( 0hop ‘ 𝑤 ) −ℎ ( 0hop ‘ 𝑥 ) ) ) = 0 ) |
14 |
|
rpgt0 |
⊢ ( 𝑦 ∈ ℝ+ → 0 < 𝑦 ) |
15 |
14
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) → 0 < 𝑦 ) |
16 |
13 15
|
eqbrtrd |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) → ( normℎ ‘ ( ( 0hop ‘ 𝑤 ) −ℎ ( 0hop ‘ 𝑥 ) ) ) < 𝑦 ) |
17 |
16
|
a1d |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 1 → ( normℎ ‘ ( ( 0hop ‘ 𝑤 ) −ℎ ( 0hop ‘ 𝑥 ) ) ) < 𝑦 ) ) |
18 |
17
|
ralrimiva |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) → ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 1 → ( normℎ ‘ ( ( 0hop ‘ 𝑤 ) −ℎ ( 0hop ‘ 𝑥 ) ) ) < 𝑦 ) ) |
19 |
|
breq2 |
⊢ ( 𝑧 = 1 → ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 ↔ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 1 ) ) |
20 |
19
|
rspceaimv |
⊢ ( ( 1 ∈ ℝ+ ∧ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 1 → ( normℎ ‘ ( ( 0hop ‘ 𝑤 ) −ℎ ( 0hop ‘ 𝑥 ) ) ) < 𝑦 ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 0hop ‘ 𝑤 ) −ℎ ( 0hop ‘ 𝑥 ) ) ) < 𝑦 ) ) |
21 |
2 18 20
|
sylancr |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 0hop ‘ 𝑤 ) −ℎ ( 0hop ‘ 𝑥 ) ) ) < 𝑦 ) ) |
22 |
21
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 0hop ‘ 𝑤 ) −ℎ ( 0hop ‘ 𝑥 ) ) ) < 𝑦 ) |
23 |
|
elcnop |
⊢ ( 0hop ∈ ContOp ↔ ( 0hop : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 0hop ‘ 𝑤 ) −ℎ ( 0hop ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
24 |
1 22 23
|
mpbir2an |
⊢ 0hop ∈ ContOp |